Cho tam giác DEF vuông tại (ED<EF),đường cao EI, biết EF=12cm, IF=9,6cm
a) Tính DE
b) Giaỉ tam giác IDE
Cho tam giác DEF vuông tại D có ED = 4cm góc F bằng 60 độ. Giải tam giác vuông
Ta có \(\sin\widehat{F}=\dfrac{ED}{EF}=\sin60^0=\dfrac{\sqrt{3}}{2}\Leftrightarrow EF=4\cdot\dfrac{2}{\sqrt{3}}=\dfrac{8\sqrt{3}}{3}\left(cm\right)\\ DF=\sqrt{EF^2-DE^2}=\dfrac{4\sqrt{3}}{3}\left(cm\right)\left(pytago\right)\)
Cho tam giác DEF vuông tại D, EK là tia phân giác của góc DEF ( K thuộc DF ). Trên tia EF lấy điểm H sao cho EH=ED.
a) Chứng minh tam giác EDK=tam giác EHK, từ đó chứng minh HK vuông góc với EF
b) Từ H kẻ đường thẳng vuông góc với DF, nó cắt DF tại I. Chứng minh HI // ED
cho tam giác DEF vuông tại D.Tia phân giác của góc DEF cắt DF tại A từ A kẻ AH vuông góc với EF tại H và AH cắt ED tại K chứng minh AD bằng AH
Cho tam giác def có di vuông góc với ef tại i. Biết df=20cm,di=12cm,ei=9cm .a, tính độ dài if,ed và chu vi tam giác def
.b, c/m tam giác def là tam giác vg
Cho tam giác DEF vuông tại D, phân giác EB. Kẻ
BI vuông góc với EF tại I. Gọi H là giao điểm của ED và
IB. Chứng minh:
a) Tam giác EDB = Tam giác EIB
b) Chứng minh tam giác BHF cân
a: Xét ΔEDB vuông tại D và ΔEIB vuông tại I có
EB chung
góc DEB=góc IEB
=>ΔEDB=ΔEIB
b: Xét ΔBDH vuông tại D và ΔBIF vuông tại I có
BD=BI
góc DBH=góc IBF
=>ΔBDH=ΔBIF
=>BH=BF
=>ΔBHF cân tại B
Cho tam giác DEF vuông tại D ,có góc DEF = 60độ ,EC là tia phân giác của góc E (C thuộc DF).Từ C ,vẽ CH vuông góc với EF (h thuộc EF).
a/ c/m tam giác DCE =tam giác HCE.
b/ Cạnh CH kéo dài cắt tia ED tại K . c/m △CKF cân tại C
a: Xét ΔEDC vuông tại D và ΔEHC vuông tại H có
EC chung
góc DEC=góc HEC
=>ΔEDC=ΔEHC
b: Xét ΔCDK vuông tại D và ΔCHF vuông tại H có
CD=CH
góc DCK=góc HCF
=>ΔCDK=ΔCHF
=>CK=CF
=>ΔCKF cân tại C
Cho tam giác DEF vuông tại D, có DEF=60 độ ,EC là tia phân giác của góc E (C thuộc DF). Từ C, vẽ CH vuông góc EF (H thuộc EF)
a) Chứng minh: tam giác DCE= tam giác HCE
b) Cạnh CH kéo dài cắt tia ED tại K. Chứng minh: tam giác CKF cân tại C
c) chứng minh: DH<CF
a: Xét ΔEDC vuông tại D và ΔEHC vuông tại H có
EC chung
\(\widehat{DEC}=\widehat{HEC}\)
Do đó; ΔEDC=ΔEHC
b: Xét ΔDCK vuông tại D vàΔHCF vuông tại H có
CD=CH
\(\widehat{DCK}=\widehat{HCF}\)
Do đó; ΔDCK=ΔHCF
Suy ra: CK=CF
a, Xét Δ DCE và Δ HCE, có :
EC là cạnh chung
\(\widehat{CDE}=\widehat{CHE}=90^o\)
\(\widehat{DEC}=\widehat{HEC}\) (EC là tia phân giác \(\widehat{DEH}\))
=> Δ DCE = Δ HCE (g.c.g)
=> DC = HC
b, Xét Δ DCK và Δ HCF, có :
DC = HC (cmt)
\(\widehat{DCK}=\widehat{HCF}\) (đối đỉnh)
=> Δ DCK = Δ HCF ( ch - cgn)
=> CK = CF
=> Δ CKF cân tại C
Cho tam giác DEF vuông tại E (ED<EF),đường cao EI, biết EF=12cm,IF=9,6cm.
a)Tính DF
b)Giải tam giác IDE
cho tam giác DEF có DI vuông EF tại I. biết DF=20cm ,DI=12cm,EI=9cm
tính độ dài IF và ED
tính chu vi của tam giác DEF
tam giác DEF là tam giác gì