Cho biểu thức: Q = 1 a - 1 - 1 a : a + 1 a - 2 - a + 2 a - 1
Rút gọn Q với a > 0, a ≠ 4 và a ≠ 1
1. Cho biểu thức : Q = ( √x + 2 / x +2 √x + 1 - √x - / x -1) ( x+ √x)
a) Rút gọn biểu thức Q
b) Tìm các gtri nguyên x dể Q nhận gtri nguyên
2. Cho biểu thức : A= ( 1/ √x +2 + 1/ √x +2 + 1/ √x -2 ) ( √x -2 /x
a) Tìm đk xác định và rút gọn A
b) Tìm tất cả các gtri của x để A > 1/2
MÌNH CẦN GẤP TRONG TỐI NI NHA
Bài 1:
a: \(Q=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right)\left(x+\sqrt{x}\right)\)
\(=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\sqrt{x}\left(\sqrt{x}+1\right)\)
\(=\dfrac{2x}{x-1}\)
Cho biến thức sau: Q = 2 x − x 2 2 x 2 + 8 − 2 x 2 x 3 − 2 x 2 + 4 x − 8 . 2 x 2 + 1 − x x .
a) Tìm điều kiện xác định của biểu thức Q;
b) Rút gọn biểu thức Q;
c) Tính giá trị của biểu thức Q khi x = 2017;
d) Tìm x để biểu thức Q > 1 2
e) Tìm x ∈ Z để giá trị biểu thức Q ∈ Z.
a) x ≠ 2 và x ≠ 0
b) Rút gọn được Q = x + 1 2 x
c) Thay x = 2017 (TMĐK) vào Q ta được Q = 1009 2017
1.Cho biểu thức Q=\(\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right)\): \(\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)a) Rút gọn Q với a>0, a\(\ne4,a\ne\)1b) Tìm giá trị của a để Q dương2.Cho biểu thức P=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)a) Tìm điều kiện của x để P xác định và rút gọn Pb) Tìm các giá trị của x để P<0c) Tính giá trị của P khi \(x=4-2\sqrt{3}\)
Bài 1:
a) Ta có: \(Q=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
\(=\left(\dfrac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{\sqrt{a}-1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}-\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\right)\)
\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)
\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)
\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)
\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)
b) Để Q dương thì \(\dfrac{\sqrt{a}-2}{3\sqrt{a}}>0\)
mà \(3\sqrt{a}>0\forall a\) thỏa mãn ĐKXĐ
nên \(\sqrt{a}-2>0\)
\(\Leftrightarrow\sqrt{a}>2\)
hay a>4
Kết hợp ĐKXĐ,ta được: a>4
Vậy: Để Q dương thì a>4
cho biểu thức K = \(\left(\frac{a}{a-1}-\frac{1}{a^2-a}\right):\left(\frac{1}{a+1}+\frac{2}{a^2-1}\right)\)
a/ Tìm điều kiện của a để biểu thức K xác định và rút gọn biểu thức K
b/ Tính giá trị biểu thức K khi a=\(\frac{1}{2}\)
cho biểu thức K = \(\left(\frac{a}{a-1}-\frac{1}{a^2-a}\right):\left(\frac{1}{a+1}+\frac{2}{a^2-1}\right)\)
a/ Tính giá trị của a để biểu thức K xác định và rút gọn biểu thức K
b/ Tính giá trị biểu thức K khi a = \(\frac{1}{2}\)
\(\left(\frac{a}{a-1}-\frac{1}{a^2-a}\right)=\frac{a^2-1}{a^2-a}=\frac{a+1}{a}\)
ở phàn a+/a thiếu số 1 nhé
\(\frac{1}{a+1}+\frac{2}{a^2-1}=\frac{a-1+2}{a^2-1}=\frac{1}{a-1}\)
=> K =\(\frac{a^2-1}{a}\)
đkxđ: a khác +-1
b, thay vào mà tình
a/ \(K=\left(\frac{a}{a-1}-\frac{1}{a^2-a}\right):\left(\frac{1}{a+1}+\frac{2}{a^2-1}\right)\)
\(=\left(\frac{a}{a-1}-\frac{1}{a\left(a-1\right)}\right):\left(\frac{1}{a+1}+\frac{2}{\left(a-1\right)\left(a+1\right)}\right)\)
\(=\frac{a^2-1}{a\left(a-1\right)}:\frac{a-1+2}{\left(a-1\right)\left(a+1\right)}\)
\(=\frac{\left(a-1\right)\left(a+1\right)}{a\left(a-1\right)}.\frac{\left(a-1\right)\left(a+1\right)}{a-1}\)
\(=\frac{a+1}{a}.a+1\)
\(=\frac{\left(a+1\right)^2}{a}\)
b, Thay a=1/2
\(\Rightarrow\frac{\left(\frac{1}{2}+1\right)^2}{\frac{1}{2}}=\frac{\frac{9}{4}}{\frac{1}{2}}=\frac{9}{2}\)
Cho biểu thức: A=\(\left(\frac{1}{\sqrt{a}-3}+\frac{1}{\sqrt{a}+3}\right)\left(1-\frac{3}{\sqrt{a}}\right)\)
a) Rút gọn biểu thức A
b)Xác định a để biểu thức A>\(\frac{1}{2}\)
a, Với \(a\ge0;a\ne9\)
\(A=\left(\frac{1}{\sqrt{a}-3}+\frac{1}{\sqrt{a}+3}\right)\left(1-\frac{3}{\sqrt{a}}\right)\)
\(=\left(\frac{2\sqrt{a}}{a-9}\right)\left(\frac{\sqrt{a}-3}{\sqrt{a}}\right)=\frac{2}{\sqrt{a}+3}\)
b, Ta có : \(\frac{2}{\sqrt{a}+3}>\frac{1}{2}\Rightarrow\frac{2}{\sqrt{a}+3}-\frac{1}{2}>0\)
\(\Leftrightarrow\frac{1-\sqrt{a}}{2\sqrt{a}+6}>0\Rightarrow1-\sqrt{a}>0\)vì \(2\sqrt{a}+6>0\)
Bài 1: Cho biểu thức A= \(\dfrac{3}{2x+6}\) - \(\dfrac{x-6}{2x^2+6x}\)
a) Rút gọn biểu thức A
b) Tính giá trị của biểu thức A tại x=\(\dfrac{1}{2}\)
Bài 2: Cho biểu thức A= \(\dfrac{5x+2}{3x^2+2x}\) + \(\dfrac{-2}{3x+2}\) với x ≠ 0 và x ≠ \(\dfrac{-2}{3}\)
a) Rút gọn biểu thức A
b) Tính giá trị biểu thức A tại x=\(\dfrac{1}{3}\).
1/ a, \(A=\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\)
\(=\dfrac{3}{2\left(x+3\right)}-\dfrac{x-6}{2x\left(x+3\right)}\)
\(=\dfrac{3x-x+6}{2x\left(x+3\right)}\)
\(=\dfrac{2x+6}{2x\left(x+3\right)}\)
\(=\dfrac{2\left(x+3\right)}{2x\left(x+3\right)}\)
\(=\dfrac{1}{x}\)
Vậy \(A=x\)
b/ Khi \(x=\dfrac{1}{2}\Leftrightarrow A=\dfrac{1}{\dfrac{1}{2}}=2\)
Vậy...
2/a,
\(A=\dfrac{5x+2}{3x^2+2x}+\dfrac{-2}{3x+2}\)
\(=\dfrac{5x+2}{x\left(3x+2\right)}-\dfrac{2x}{x\left(3x+2\right)}\)
\(=\dfrac{5x+2-2x}{x\left(3x+2\right)}\)
\(=\dfrac{3x+2}{x\left(3x+2\right)}\)
\(=\dfrac{1}{x}\)
Vậy....
b/ Với \(x=\dfrac{1}{3}\Leftrightarrow A=\dfrac{1}{\dfrac{1}{3}}=3\)
Vậy..
cho biểu thức
P = ( 1 + \(\frac{a-\sqrt{a}}{\sqrt{a}-1}\))(1 -\(\frac{a+\sqrt{a}}{1+\sqrt{a}}\))
tính gtnn của biểu thức Q= P+\(\sqrt{a}\)
cho biểu thức P = (1-\(\frac{\sqrt{a}}{a+1}\)): (\(\frac{1}{\sqrt{a}-1}\)\(-\frac{2\sqrt{a}}{a\sqrt{a}+\sqrt{a}-a-1}\)
đơn giản biểu thức.
Bạn chưa viết hết dấu ngoặc đơn thì mình không thể giải được!
Cho biểu thức: \(A=\dfrac{x\sqrt{x}+1}{x-1}-\dfrac{x-1}{\sqrt{x}+1}\)
a) Rút gọn biểu thức sau A
b) Tính giá trị của biểu thức A khi \(x=\dfrac{1}{4}\)
ĐK: x\(\ge0,x\ne1\)
a) \(A=\dfrac{x\sqrt{x}+1}{x-1}-\dfrac{x-1}{\sqrt{x}+1}=\dfrac{x\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\left(x-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{x\sqrt{x}-x-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x\sqrt{x}+1-x\sqrt{x}+x+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
b) Thay x=\(\dfrac{1}{4}\) vào A thì A=\(\dfrac{\sqrt{\dfrac{1}{4}}}{\sqrt{\dfrac{1}{4}}-1}=\dfrac{\dfrac{1}{2}}{\dfrac{1}{2}-1}=\dfrac{\dfrac{1}{2}}{-\dfrac{1}{2}}=-1\)
Vậy khi x=\(\dfrac{1}{4}\) thì A=-1