Chứng minh: 2 - 3 2 + 3 = 1 là hai số nghịch đảo của nhau.
1. Chứng minh: \(\left(2^1+2^2+2^3+2^4+...+2^{59}+2^{60}\right):3\)
2. Chứng minh: \(M=3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}⋮6\)
1.A = 21 + 22 + 23 + 24 + ... + 259 + 260
Xét .dãy số: 1; 2; 3; 4; .... 59; 60 Dãy số này có 60 số hạng vậy A có 60 hạng tử.
vì 60 : 2 = 30 nên nhóm hai số hạng liên tiếp của A vào một nhóm thì ta được:
A = (21 + 22) + (23 + 24) +...+ (259 + 260)
A = 2.(1 + 2) + 23.(1 +2) +...+ 259.(1 +2)
A =2.3 + 23.3 + ... + 259.3
A =3.( 2 + 23+...+ 259)
Vì 3 ⋮ 3 nên A = 3.(2 + 23 + ... + 259)⋮3 (đpcm)
2, M = 3n+3 + 3n+1 + 2n+3 + 2n+2 ⋮ 6
M = 3n+1.(32 + 1) + 2n+2.(2 + 1)
M = 3n.3.(9 + 1) + 2n+1.2 . 3
M = 3n.30 + 2n+1.6
M = 6.(3n.5 + 2n+1)
Vì 6 ⋮ 6 nên M = 6.(3n.5+ 2n+1) ⋮ 6 (đpcm)
1/ chứng minh rằng : 2^n+3 +2^n+1 +2^n chia hết cho 11
2/ chứng minh rằng : 2.3^n+1 +3^n+2 chia hết cho 5
3/ chứng minh : 3^15 +3^14 +3^12 chi hết cho 57
a/ Chứng minh: A = 2^1 + 2^2 + 2^3 + 2^4 +......+ 2^2010 chia hết cho 3 và 7
b/ Chứng minh: B = 3^1 + 3^2 + 3^3 + 3^4 +......+ 3^2010 chia hết cho 4 và 13
c/ Chứng minh: C = 5^1 + 5^2 + 5^3 + 5^4 +......+ 5^2010 chết hết cho 6 và 31
A=2^1+2^2+2^3+2^4+...+2^2010
=(2+2^2)+(2^3+2^4)+...+(2^2010+2^2011)
=2.(1+2)+2^3.(1+2)+...+2^2010.(1+2)
=2.3+2^3.3+...+2^2010.3
=(2+2^3+2^2010).3
=> A chia het cho 3
Mà câu c bạn đánh chia hết thành chết hết rồi kìa
Chứng minh chia hết
Chứng minh : B= 3^1+3^2+3^3+3^4+...+2^2010 chia hết cho 4 và 13
Chứng minh :B=3^1 + 3^2 + 3^3 +3^4 +...+3^2010 chia hết cho 4 và 13
a, cho A = 2 + 2^2 + 2^3 + ...... + 2^60 chứng minh A : 3
b, cho B = 3 +3^2 + 3^3 + .....+ 3^20 chứng minh B là bội của 12
a, \(A=2+2^2+2^3+....+2^{60}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+....+\left(2^{59}+2^{60}\right)\)
\(=2.\left(1+2\right)+2^3.\left(1+2\right)+....+2^{59}.\left(1+2\right)\)
\(=2.3+2^3.3+....+2^{59}.3\)
\(=3.\left(2+2^3+...+2^{59}\right)⋮3\)(đpcm)
Chứng minh A= 2^1 + 2^2 + 2^3 + 2^4 + ............+ 2^2010 chia hết cho 3 và 7
Chứng minh B = 3^1+ 3^2 +3^3 + 3^3 + 3^4 + ..............+ 2^2010 chia hết cho 4 và 13
a) Cho P=5+5^2+5^3+5^4+5^5+...+5^102 .Chứng minh P:6 b) Cho A=1+4+4^2+4^3+...+4^100 Chứng minh A:5 c) Cho B = 1+2+2^2+2^3+...2^98 Chứng minh B:7 d) Cho C =1+3+3^2+3^3+...+3^104 Chứng minh C:40
Chứng minh rằng
a) A = 3 + 32 + 33 + ...+39 + 310 . Chứng minh A chia hết cho 4
b) B = 22020 - 22016 . Chứng minh B chia hết cho 15
c) C = 2 + 22 + 23 + ... + 260 . Chứng minh C + 7
d) Chứng tỏ rằng 102016 + 8 + 9
\(a,\)Ta có:
\(A=3+3^2+3^3+...+3^{10}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^9+3^{10}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^9\left(1+3\right)\)
\(=3\cdot4+3^3\cdot4+...+3^9\cdot4\)
\(=4\left(3+3^3+...+3^9\right)⋮4\)
\(\Rightarrow3+3^2+3^3+...+3^{10}⋮10\\ \Rightarrow A⋮10\)
\(\Rightarrow\)ĐPCM
C,GHÉP BA SỐ LIÊN TIẾP LẠI RỒI LẤY SỐ HẠNG ĐẦU TIÊN RA LÀM CHUNG VÀ TỒNG TRONG NGOẶC ĐƯỢC 7.
A) Chứng minh: A=2^1+2^2+2^3+2^4+.........+2^2010 chia hết cho 3 và 7
B)Chứng minh:B=3^1+3^2+3^3+3^4+..........+2^2010 chia hết cho 4 và 13
C) Chứng minh C=5^1+5^2+5^3+5^4+.......+5^2010 chia hết cho 6 và 31
D) Chứng minh D=7^1+7^2+7^3+7^4+........+7^2010 chia hết cho 8 và 57
chứng minh: a= 1/2 mũ 2+1/3 mũ 2+1/4 mũ 2+.....+1/2013 mũ 2 .Chứng minh A <3/4
\(A=\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{3}\right)^2+\left(\dfrac{1}{4}\right)^2+...+\left(\dfrac{1}{2013}\right)^2\)
\(A=\left(\dfrac{1}{2+3+4+...+2013}\right)^2\)
\(A=\left(\dfrac{1}{\left(2013-2\right)+1}\right)^2\)
\(A=\left(\dfrac{1}{2012}\right)^2\)
\(A=\dfrac{1}{2012\cdot2012}\)
\(\Rightarrow A=\dfrac{1}{2012}< \dfrac{3}{4}\)