Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 22:29

Số đo của các góc lượng giác tia đầu $O u$, tia cuối $O v$ là
\(sđ(O u, O v) = sđ(O x, O v)  -  sđ(O x, O u)+ k{360}^{\circ}(k \in \mathbb{Z}) \)

\(=-270^{\circ}-240^{\circ}+k 360^{\circ}=-510^{\circ}+k 360^{\circ} \)
\( =-150^{\circ}+(k-1) 360^{\circ}=-150^{\circ}+n 360^{\circ} \quad(n=k-1, n \in \mathbb{Z})
\)
Vậy các góc lượng giác $(O u, O v)$ có số đo là $-150^{\circ}+n 360^{\circ} \quad(n \in \mathbb{Z})$.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 10 2017 lúc 12:31

a. S,           b. Đ,

Nhật Minh
Xem chi tiết

                                  loading... 

a,Kéo dài OY cắt O'X' tại A ta có: 

  \(\widehat{XOY}\) =  \(\widehat{XOA}\)  = \(\widehat{OAO'}\) (so le trong) (1)

   \(\widehat{Y'O'X'}\) = \(\widehat{Y'O'A}\) = \(\widehat{OAO'}\) (so le trong) (2)

Kết hợp (1) Và (2) ta có:

    \(\widehat{XOY=}\) \(\widehat{X'O'Y'}\) (đpcm)

    

 

 

 

 

  

loading... 

b, Kéo dài OY cắt O'Z' tại H 

             \(\widehat{ZOA}\) = \(\dfrac{1}{2}\) \(\widehat{XOY}\) (vì OZ là phân giác của góc XOY

             \(\widehat{HO'A}\) = \(\dfrac{1}{2}\) \(\widehat{X'O'Y'}\) (vì OY là phân giác của góc X'O'Y')

         Mặt khác ta có \(\widehat{OAO'}\) = \(\widehat{HO'A}\) + \(\widehat{AHO'}\) (góc ngoài tam giác bằng tổng hai góc trong không kề với nó)

               \(\widehat{HO'A}\) = \(\dfrac{1}{2}\) \(\widehat{OAO'}\)  ⇒ \(\widehat{AHO'}\) = \(\dfrac{1}{2}\) \(\widehat{OAO'}\) = \(\dfrac{1}{2}\) \(\widehat{XOY}\)

          ⇒ \(\widehat{ZOA}\) = \(\widehat{AHO'}\) (hai góc này ở vị trí so le trong)

         ⇒ OZ // O'Z' (đpcm)

                

 

                  

Pinky mộng hường 123
Xem chi tiết
Đinh Hoàng Mai Hương
Xem chi tiết
Cấn Anh Khoa
Xem chi tiết
tth_new
Xem chi tiết
Cà Bui
1 tháng 6 2019 lúc 12:58

xD

Có: \(\frac{x^2-z^2}{y+z}+\frac{y^2-x^2}{z+x}+\frac{z^2-y^2}{x+y}\)(1)

\(=\frac{\left(x-z\right)\left(x+z\right)}{y+z}+\frac{\left(y-x\right)\left(x+y\right)}{z+x}+\frac{\left(z-y\right)\left(y+z\right)}{x+y}\)

\(\left(1\right)=S_1\left(x-z\right)^2+S_2\left(y-x\right)^2+S_3\left(z-y\right)^2\)

Trong đó:

\(\hept{\begin{cases}S_1=\frac{x+z}{\left(y+z\right)\left(x-z\right)}\\S_2=\frac{x+y}{\left(z+x\right)\left(y-x\right)}\\S_3=\frac{y+z}{\left(x+y\right)\left(z-y\right)}\end{cases}}\)

Giả sử: \(x\ge y\ge z\)( x,y,z lớn hơn 0)

Có: \(S_1=\frac{x+z}{\left(y+z\right)\left(x-z\right)}\ge0\)

Xét: \(S_1+S_2=\frac{x+z}{\left(y+z\right)\left(x-z\right)}-\frac{x+y}{\left(x+z\right)\left(x-y\right)}=\frac{\left(x+z\right)^2+\left(x+y\right)\left(y+z\right)^2+\left(y+z\right)\left(y-z\right)\left(2x+y+z\right)}{.....}\ge0\)

Xét tiếp \(S_1+S_3\)là xong

Không biết đúng k tại mình hơi yếu

tth_new
1 tháng 6 2019 lúc 13:34

*Nếu được giả sử như bạn Cà Bùi thì bài làm của em như sau,mong mọi người góp ý ạ!

Ta có: \(VT=\frac{x^2-z^2}{y+z}+\frac{y^2-x^2}{z+x}-\frac{x^2-z^2+y^2-x^2}{x+y}\)

\(=\left(x^2-z^2\right)\left(\frac{x+y-y-z}{\left(x+y\right)\left(y+z\right)}\right)+\left(y^2-x^2\right)\left(\frac{x+y-z-x}{\left(z+x\right)\left(x+y\right)}\right)\) (nhóm các số thích hợp + quy đồng)

\(=\frac{\left(x+z\right)\left(x-z\right)^2}{\left(x+y\right)\left(y+z\right)}+\frac{\left(y-x\right)\left(y-z\right)}{\left(z+x\right)}\)

Do a, b, c có tính chất hoán vị, nên ta giả sử y là số lớn nhất. Khi đó vế trái không âm hay ta có đpcm.

Cà Bui
1 tháng 6 2019 lúc 13:36

Bn giỏi quá !

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 10 2018 lúc 6:41

Chọn D.

Ta có nhận xét như sau:

Stellar Phan
Xem chi tiết
Trang Đoàn
30 tháng 9 2016 lúc 10:49

Sao ko có gì vậy ạ 

Trang Đoàn
Xem chi tiết
Trang Đoàn
29 tháng 9 2016 lúc 18:34

Toán lớp 7

Nguyễn Mạnh Đạt
14 tháng 10 2016 lúc 19:36

Toán lớp 7

Nguyễn Thế Bảo
29 tháng 9 2016 lúc 18:30

bài 1:

a) Gọi số đo các góc của tam giác trên là x; y; z; ta có:

x = y = z theo đề bài

x  + y + z = 180 độ (tổng 3 góc trong tam giác)

=> x + x + x = 180 độ

x = 60 độ

vậy số đo 3 góc của tam giác trên cùng bằng 60 độ

b) số đo các góc ngoài của tam giác trên cùng bằng 180 độ - 60 độ = 120 độ