Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen Van Viet Cuong
Xem chi tiết
Pham Van Hung
7 tháng 12 2018 lúc 13:02

\(f\left(x\right)=\left(x-2\right)\left(x-3\right)Q\left(x\right)+ax+b\) (Q(x) là thương, ax + b là số dư)

f (x) chia cho x - 2 dư 3 tức f(2) = 3 \(\Rightarrow2a+b=3\) (1)

f(x) chia x - 3 dư 4 tức f(3) = 4 \(\Rightarrow3a+b=4\) (2)

Từ (1) và (2), ta được \(3a+b-\left(2a+b\right)=4-3=1\Rightarrow a=1\Rightarrow b=1\)

Vậy đa thức dư là ax + b = x + 1

Nguyen Van Viet Cuong
7 tháng 12 2018 lúc 19:07

cảm ơn bạn nhiều lắm 

phạm hồng hạnh
Xem chi tiết
Oo Bản tình ca ác quỷ oO
5 tháng 8 2016 lúc 15:23

b) ta có: f(2) = 2 - 3 = -1

             f(5) = 5 - 3 = 2

            f(-1/2) = -1/2 - 3 = -7/2

ko bít đúng ko?? 565464654654654765876546266456456456756756757

Phan Cao Nguyen
5 tháng 8 2016 lúc 15:42

a,y = f(x) = x - 3 nếu x =3 hoặc x > 3 và = -(x - 3) nếu x < 3

b,+ Với f(2), ta có: 2 < 3

-> y = f(2) = -(2 - 3) = -(-1) = 1

   + Với f(5), ta có: 5 > 3

-> y = f(5) = 5 - 3 = 2

   + Với f(\(-\frac{1}{2}\)), ta có: \(-\frac{1}{2}\)<  3

-> y = f(\(-\frac{1}{2}\)) = -(\(-\frac{1}{2}\)-  3) = -(\(-3\frac{1}{2}\)) = \(3\frac{1}{2}\) 

c, Với f(x) = \(\frac{1}{3}\), ta có:

TH1: x > 3

Ta có:y = f(x) = x - 3 = \(\frac{1}{3}\)

 -> x = \(\frac{1}{3}\)+ 3 = 

Kỳ AnH
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 7 2017 lúc 2:39

f'(1) = -8

f'(2) = 0

f'(3) = 0

Neo Amazon
Xem chi tiết
Nguyễn Văn Dũng
6 tháng 2 2022 lúc 19:25

22-21-3213-3124-4-24-2-4-143

Khách vãng lai đã xóa
Omega Neo
Xem chi tiết
Đăng Duy Nguyễn
Xem chi tiết
Nguyễn Cảnh Hùng
Xem chi tiết
Đỗ Ngọc Trinh
15 tháng 12 2018 lúc 3:36

Đáp án đúng : B

Nguyễn Hoàng Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 12 2023 lúc 20:41

a: \(f\left(x\right)=2x^2-7x+9\)

=>\(f'\left(x\right)=2\cdot2x-7=4x-7\)

Đặt f'(x)=0

=>\(4x-7=0\)

=>\(x=\dfrac{7}{4}\)

\(f\left(\dfrac{7}{4}\right)=2\cdot\left(\dfrac{7}{4}\right)^2-7\cdot\dfrac{7}{4}+9=\dfrac{23}{8}\)

\(f\left(-1\right)=2\left(-1\right)^2-7\cdot\left(-1\right)+9=18\)

\(f\left(4\right)=2\cdot4^2-7\cdot4+9=13\)

Vì \(f\left(\dfrac{7}{4}\right)< f\left(4\right)< f\left(-1\right)\)

nên \(f\left(x\right)_{max\left[-1;4\right]}=18;f\left(x\right)_{min\left[-1;4\right]}=\dfrac{23}{8}\)

b: \(f\left(x\right)=x^2+5x+3\)

=>\(f'\left(x\right)=2x+5\)

f'(x)=0

=>2x+5=0

=>2x=-5

=>\(x=-\dfrac{5}{2}\)

\(f\left(-\dfrac{5}{2}\right)=\left(-\dfrac{5}{2}\right)^2+5\cdot\dfrac{-5}{2}+3=\dfrac{25}{4}-\dfrac{25}{2}+3=-\dfrac{13}{4}\)

\(f\left(2\right)=2^2+5\cdot2+3=4+10+3=17\)

\(f\left(6\right)=6^2+5\cdot6+3=69\)

Vậy: \(f\left(x\right)_{max\left[2;6\right]}=69;f\left(x\right)_{min\left[2;6\right]}=-\dfrac{13}{4}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 1 2017 lúc 8:33

Đáp án A

(1) Nếu hàm số f(x) có đạo hàm tại điểm x = x 0 thì f(x) liên tục tại điểm đó. Đây là mệnh đề đúng.

(2) Nếu hàm số f (x) liên tục tại điểm x = x 0  thì f(x) có đạo hàm tại điểm đó.

Phản ví dụ

Lấy hàm f ( x ) = x  ta có D= R nên hàm số f(x) liên tục trên R.

Nhưng ta có  l i m x → 0 + f ( x ) - f ( 0 ) x - 0 = l i m x → 0 + x - 0 x - 0 = l i m x → 0 + x - 0 x - 0 = 1 l i m x → 0 - f ( x ) - f ( 0 ) x - 0 = l i m x → 0 - x - 0 x - 0 = l i m x → 0 - - x - 0 x - 0 = - 1

Nên hàm số không có đạo hàm tại x = 0.

Vậy mệnh đề (2) là mệnh đề sai.

(3) Nếu f(x) gián đoạn tại  x = x 0  thì chắc chắn f(x) không có đạo hàm tại điểm đó.

Vì (1) là mệnh đề đúng nên ta có f(x)  không liên tục tại  x = x 0  thì f(x) không có đạo hàm tại điểm đó.

Vậy (3) là mệnh đề đúng.