Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn khang hưng
Xem chi tiết
le vi dai
Xem chi tiết
Nam Tran Ngoc Nam
10 tháng 6 2016 lúc 23:14

A=x

Nguyễn Thảo Ly
20 tháng 7 2016 lúc 8:42

a) A=x^2+2

b) mình nghĩ x thuộc tập hợp R

c)GTNN của A=1/4 khi x=1/2

Trang
Xem chi tiết
Nguyễn Văn Vinh
6 tháng 11 2016 lúc 20:50

bài 2

Ta có:

\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)

Trường hợp 1: \(x-102>0\Rightarrow x>102\)

\(2-x>0\Rightarrow x< 2\)

\(\Rightarrow102< x< 2\left(loại\right)\)

Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)

\(2-x< 0\Rightarrow x>2\)

\(\Rightarrow2< x< 102\left(nhận\right)\)

Vậy GTNN của A là -100 đạt được khi 2<x<102.

Nguyễn Thị Linh
Xem chi tiết
Kim An
Xem chi tiết
ILoveMath
19 tháng 1 2022 lúc 16:38

\(\left|x-5\right|+\left|x-7\right|\\ =\left|5-x\right|+\left|x-7\right|\\ \ge\left|5-x+x-7\right|\\ =\left|-2\right|\\ =2\)

Dấu "=" xảy ra \(\Leftrightarrow\left(5-x\right)\left(x-7\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}5-x\ge0\\x-7\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}5-x\le0\\x-7\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\le5\\x\ge7\left(vô.lí\right)\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge5\\x\le7\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow5\le x\le7\)

Vậy \(5\le x\le7\) thì \(\left|x-5\right|+\left|x-7\right|\) đạt GTNN

Nguyễn Hữu Trí
Xem chi tiết
Hiệp sĩ ánh sáng ( Boy l...
9 tháng 7 2019 lúc 10:22

P=(√x+3√x+2+4xx+3x+9x−√x−6):(√xx+3+2√x+3x+5√x+6)

=[(√x+3)(√x−3)(√x+2)(√x−3)+4xx+3x+9(√x+2)(√x−3)]:[√x(√x+2)(√x+3)(√x+2)+2√x+3(√x+3)(√x+2)]

=x−9+4xx+3x+9(√x+2)(√x−3):x+2√x+2√x+3(√x+3)(√x+2)

=4xx+4x(√x+2)(√x−3)⋅(√x+3)(√x+2)(√x+1)(√x+3)

=4x(√x+1)(√x−3)(√x+1)=4xx−3

b/ P=48⇔4xx−3=48

⇔4x=48√x−144

⇔4x−48√x+144=0

⇔(2√x−12)2=0

⇔2√x−12=0⇔√x=6⇔x=36(TM)

Vậy................

Nguyễn Hữu Trí
13 tháng 1 2022 lúc 13:27
Cái gì ê? Chẳng hiểu?
Khách vãng lai đã xóa
Nguyễn Thị Phương Thảo
Xem chi tiết
Nguyễn Thị Phương Thảo
22 tháng 7 2021 lúc 20:18

Toán lớp 6 

Khách vãng lai đã xóa
Châu Anh Đăng
Xem chi tiết
Pé Jin
30 tháng 5 2016 lúc 13:40

\(A=\left(x-1\right)^2+2016\)

Vì \(\left(x-1\right)^2\ge0\)

\(=>GTNN\left[\left(x-1\right)^2\right]=0\)

Vậy \(A_{min}=0+2016=2016\)

Để A đạt giá trị nhỏ nhất thì \(\left(x-1\right)^2=0\)

\(\Rightarrow x-1=0\Rightarrow x=1\)

\(B=Ix+10I+2016\)

Vì \(Ix+10I\ge0\)

Nên \(GTNN\left(Ix+10I\right)=0\)

Vậy \(B_{min}=0+2016=2016\)

Để B đạt giá trị nhỏ nhất thì \(Ix+10I=0\) 

\(x+10=0\Rightarrow x=-10\)

\(C=\frac{5}{x-2}\)

Khi \(x-2\) càng lớn thì \(C=\frac{5}{x-2}\)càng nhỏ

Mà để C là số nguyên thì \(\left(x-2\right)\in\left\{-5;5\right\}\)

Mà \(\left(-5\right)< 5\)

=> \(GTNN\left(x-2\right)=-5\)

\(\Rightarrow x=\left(-5\right)+2=-3\)

Đặng Phương Thảo
Xem chi tiết
Trần Thị Loan
31 tháng 7 2015 lúc 21:03

Phá dấu giá trị tuyệt đối : 

\(\left|x+\frac{3}{5}\right|=x+\frac{3}{5}\) nếu  x \(\ge\) \(-\frac{3}{5}\) và \(\left|x+\frac{3}{5}\right|=-\left(x+\frac{3}{5}\right)\) nếu x  < \(-\frac{3}{5}\)

\(\left|x+\frac{1}{5}\right|=x+\frac{1}{5}\) nếu x \(\ge\) \(-\frac{1}{5}\) và \(\left|x+\frac{1}{5}\right|=-\left(x+\frac{1}{5}\right)\) nếu x < \(-\frac{1}{5}\)

|x + 3| = x + 3 nếu x \(\ge\) -3 và |x + 3| = - (x+3) nếu x < -3

Xét các khoảng như sau:

+) Nếu x < - 3 thì A = \(-\left(x+\frac{3}{5}\right)\) \(-\left(x+\frac{1}{5}\right)\) - (x+3) = -x - \(\frac{3}{5}\) - x - \(\frac{1}{5}\) - x - 3 = -3x  \(-\frac{19}{5}\) > (-3). (-3)  \(-\frac{19}{5}\) = 26/5

+) Nếu -3 \(\le\) x < \(-\frac{3}{5}\) thì  A = \(-\left(x+\frac{3}{5}\right)\) \(-\left(x+\frac{1}{5}\right)\) + x + 3 = -x +  11/5  > - (-3/5) + 11/5 = 14/5

+) Nếu  \(-\frac{3}{5}\) \(\le\) x < \(-\frac{1}{5}\) => A = \(\left(x+\frac{3}{5}\right)\) \(-\left(x+\frac{1}{5}\right)\) + x+ 3 = x + \(\frac{17}{5}\) \(\ge\) (-3/5) + 17/5 = 14/5

+) Nếu x \(\ge\) \(-\frac{1}{5}\)=> A = \(\left(x+\frac{3}{5}\right)\) + \(\left(x+\frac{1}{5}\right)\) + x+ 3 = 3x + 19/5 \(\ge\) 3. (-1/5) + 19.5 = 16/5

Từ các trường  hợp trên => A nhỏ nhất bằng  14/5 khi  \(-\frac{3}{5}\) \(\le\) x < \(-\frac{1}{5}\)