Có bao nhiêu giá trị của x thỏa mãn 2 x 3 (2x – 3) – x 2 (4x2 – 6x + 2) = 0
A. 2
B. 3
C. 0
D. 1
Có bao nhiêu giá trị x nguyên dương thỏa mãn (x-3).(x+2) = 0 là
A. 3
B. 2
C. 0
D. 1
Có bao nhiêu giá trị x thỏa mãn ( 2 x + 1 ) 2 – 4 ( x + 3 ) 2 = 0
A. 0
B. 1
C. 2
D. 3
Ta có
( 2 x + 1 ) 2 – 4 ( x + 3 ) 2 = 0 ⇔ 2 x 2 + 2.2 x .1 + 1 2 − 4 x 2 + 6 x + 9 = 0 ⇔ 4 x 2 + 4 x + 1 – 4 x 2 – 24 x – 36 = 0 ⇔ - 20 x = 35 ⇔ x = - 7 4
Vậy có một giá trị của x thỏa mãn yêu cầu.
Đáp án cần chọn là: B
Có bao nhiêu giá trị của x thỏa mãn \(\left(\sqrt{x}-4\right)\left(x^2-4\right)=0\)
A. 2 B. 4 C. 3 D. 1
đáp án+giải thích
Cần gấp !!!
Có 3 giá trị là 16; 2; -2
=>C
A) tìm GTLN của biểu thúc A=(3x^2+6x+10)/(x^2+2x+3)
B) cho x>0 thỏa mãn x^2+1/x^2=7. tính giá trị của biểu thức B=x^2+1/x^2
a) \(A=\frac{3x^2+6x+10}{x^2+2x+3}\)
\(A=\frac{3x^2+6x+9+1}{x^2+2x+3}\)
\(A=\frac{3\left(x^2+2x+3\right)+1}{x^2+2x+3}\)
\(A=\frac{3\left(x^2+2x+3\right)}{x^2+2x+3}+\frac{1}{x^2+2x+1+2}\)
\(A=3+\frac{1}{^{\left(x+1\right)^2+2}}\le3+\frac{1}{2}=\frac{7}{2}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=-1\)
I) THỰC HIỆN PHÉP TÍNH a) 2x(x^2-4y) b)3x^2(x+3y) c) -1/2x^2(x-3) d) (x+6)(2x-7)+x e) (x-5)(2x+3)+x II phân tích đa thức thành nhân tử a) 6x^2+3xy b) 8x^2-10xy c) 3x(x-1)-y(1-x) d) x^2-2xy+y^2-64 e) 2x^2+3x-5 f) 16x-5x^2-3 g) x^2-5x-6 IIITÌM X BIẾT a)2x+1=0 b) -3x-5=0 c) -6x+7=0 d)(x+6)(2x+1)=0 e)2x^2+7x+3=0 f) (2x-3)(2x+1)=0 g) 2x(x-5)-x(3+2x)=26 h) 5x(x-1)=x-1 IV TÌM GTNN,GTLN. a) tìm giá trị nhỏ nhất x^2-6x+10 2x^2-6x b) tìm giá trị lớn nhất 4x-x^2-5 4x-x^2+3
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
Câu 22 Giá trị của x thoả mãn 2x(x – 3) + 5(x – 3) = 0 là
A. 0
B.- \(\dfrac{5}{2}\)
C. 3 hoặc -\(\dfrac{5}{2}\)
câu 23 Giá trị của x thoả mãn (10x + 9).x – (5x – 1)(2x + 3) = 8 là:
A. 1,5
B. 1,25
C. –1,25
D. 3
Câu 24 Giá trị của x thỏa mãn 2x( x + 3 ) + 2( x + 3 ) = 0 là?
A. x = -3 hoặc x =1
B. x =3 hoặc x = -1
C. x = -3 hoặc x = -1 5
D. x =1 hoặc x = 3 Câu
25 Giá trị của x thỏa mãn (x + 2)(x2 – 2x + 4) – x(x2 + 2) = 15 là :
A. –1,5
B. –2,5
C. –3,5
D. –4,5
Câu 26 Giá trị của x thoả mãn (x + 3)3 – x(3x+1)2 + (2x + 1)(4x2 – 2x + 1) = 28 là: A. 0
B. -8 \(\dfrac{2}{3}\)
C. 0 hoặc 8\(\dfrac{2}{3}\)
D. 0 hoặc -8\(\dfrac{2}{3}\)
Câu 28 Tứ giác ABCD có 𝐴̂ = 1200 ; 𝐵̂ = 800 ; 𝐶̂ = 1000 thì:
A. 𝐷̂ = 600
B. 𝐷̂ = 900
C. 𝐷̂ = 400
D. 𝐷̂ = 1000
Câu 29 Cho ΔABC có I, K lần lượt là trung điểm của AB và AC Biết BC = 20cm. Tacó:
A. IK = 40 cm.
B. IK = 10 cm.
C. IK=5 cm.
D. IK= 15 cm.
\(22,C\\ 23,C\\ 24,Sai.hết\\ 25,C\\ 28,A\\ 29,B\)
a) Cho 0<x<y thỏa mãn \(2x^2+2y^2=5xy\). Tính E=\(\dfrac{x^2+y^2}{x^2-y^2}\)
b) Cho x=\(\dfrac{1}{\sqrt[3]{3-2\sqrt{2}}}\)+ \(\sqrt[3]{3-2\sqrt{2}}\). Tính giá trị biểu thức
P=\(\left(2x^3-6x+2008\right)^{2021}\)
a)
Ta có: $2x^2+2y^2=5xy \Leftrightarrow 2\frac{x}{y}+\frac{y}{x}=5$
Đặt $t=\frac{x}{y}$, ta có $2t+\frac{1}{t}=5 \Rightarrow 2t^2-5t+1=0$
Giải phương trình trên ta được $t_1=\frac{1}{2}$ và $t_2=1$. Vì $0<x<y$ nên $t>0$, do đó $t=\frac{x}{y}=\frac{1}{2}$.
Từ đó suy ra $x=\frac{y}{2}$ và thay vào biểu thức $E$ ta được:
$E=\frac{x^2+y^2}{x^2-y^2}=\frac{\frac{y^2}{4}+y^2}{\frac{y^2}{4}-y^2}=-\frac{5}{3}$
Vậy kết quả là $E=-\frac{5}{3}$.
đặt $a=\frac{1}{\sqrt[3]{3-2\sqrt{2}}}$, $b=\sqrt[3]{3-2\sqrt{2}}}$
Khi đó:
$$(a+b)^3=a^3+b^3+3ab(a+b)$$
$$a^3+b^3=\left(\frac{1}{\sqrt[3]{3-2\sqrt{2}}}\right)^3+\left(\sqrt[3]{3-2\sqrt{2}}\right)^3= \frac{1}{3-2\sqrt{2}}+(3-2\sqrt{2})=4$$
$$ab=\frac{1}{\sqrt[3]{3-2\sqrt{2}}}\cdot\sqrt[3]{3-2\sqrt{2}}=\sqrt[3]{(3-2\sqrt{2})(3+2\sqrt{2})}=\sqrt[3]{1}=1$$
Do đó, ta có:
$$(a+b)^3=4+3ab(a+b)=4+3(a+b)$$
Vậy $2x^3=2(a+b)^3=8+6(a+b)$ và $6x=6(a+b)$.
Thay vào biểu thức $P$, ta được:
$$P=\left(2x^3-6x+2008\right)^{2021}=\left(8+6(a+b)-6(a+b)+2008\right)^{2021}=2016^{2021}$$
Vậy kết quả là $P=2016^{2021}$.
Cho mình hỏi
1) Giá trị x thỏa mãn: x3-3x2-9x-54=0
2) Giá trị x<0 thỏa mãn: (2x+1)2 - (x-3)2=0
3) Giá trị x<0 thỏa mãn: x2+7x-18=0
1/ Giá trị của x^3+ 9x^2y+ 27xy^2+27y^3 Biết (1/3)x+y+1=0
2/Giá trị của x+y=4, x.y=5 và x<0
3/Giá trị của 8x^3- 12x^2y-6xy^2-y^3
4/Giá trị x nguyên tố thỏa mản: x^2-x-20=0
5/Giá trị của x thỏa mãn (x-3)(x^4+2x^2+1)=0
6/Giá trị nhỏ nhất của: A=[x+2]-51/2
vì x+y=4 nền (x+y)^2=4^2 =x^2+ 2xy+y^2=16 ma xy=5 nên 2xy=10 ta có x^2+y^2+10=16 ; x^2+y^2= 16-10 x^2+y^2=6 kết quả mik là z đó nhưng k biết có đúng k bn ak