Tìm giá trị nhỏ nhất của biểu thức A = x 2 + 2 y 2 – 2xy + 2x – 10y
A. 17
B. 0
C. -17
D. -10
Tìm giá trị nhỏ nhất của các biểu thức :
a, \(A=2x^2+y^2-2xy-2x+3\)
b, \(B=x^2-2xy+2y^2+2x-10y+17\)
c, \(C=x^2-xy+y^2-2x-2y\)
hoc tot de lam lien doi nho chua.
\(A=2x^2+y^2-2xy-2x+3\)
\(A=\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+2\)
\(A=\left(x-y\right)^2+\left(x-1\right)^2+2\)
Mà \(\left(x-y\right)^2\ge0\forall x;y\)
\(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow A\ge2\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x-y=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=1\end{cases}}\)
Vậy Min A = 2 khi x=y=1
\(B=x^2-2xy+2y^2+2x-10y+17\)
\(B=\left(x^2-2xy+y^2\right)+y^2+2x-10y+17\)
\(B=\left[\left(x-y\right)^2+2\left(x-y\right)+1\right]-8y+y^2+16\)
\(B=\left(x-y+1\right)^2+\left(y^2-8y+16\right)\)
\(B=\left(x-y+1\right)^2+\left(y-4\right)^2\)
Mà \(\left(x-y+1\right)^2\ge0\forall x;y\)
\(\left(y-4\right)^2\ge0\forall y\)
\(\Rightarrow B\ge0\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x-y+1=0\\y-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=4\end{cases}}\)
Vậy Min B = 0 khi (x;y)=(3;4)
tìm giá trị nhỏ nhất của biểu thức
\(A=x^2-2xy+2y^2+2x-10y+17\)
tìm giá trị nhỏ nhất của biểu thức sau A=x^2-2xy+2y^2+2x-10y+2033
\(A=x^2-2xy+y^2+2x-2y+1+y^2-8y+16+2016\)
\(A=\left(x-y\right)^2+2\left(x-y\right)+1+\left(y-4\right)^2+2016\)
\(A=\left(x-y+1\right)^2+\left(y-4\right)^2+2016\)
vì \(\left(x-y+1\right)^2\ge0\)
\(\left(y-4\right)^2\ge0\)
nên \(\left(x-y+1\right)^2+\left(y-4\right)^2+2016\ge2016\)
dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}x=3\\y=4\end{cases}}\)
vậy gtnn của bt là 2016 khi x=3;y=4
đề này của sở giáo dục và đào tạo tỉnh hà nam
mk chiu ban ak di thi mk cug vao caau day nhưng ko biet lam
tìm giá trị nhỏ nhất của biểu thức :
B= -x^2 + 2xy -4y^2 + 2x + 10y -8
tìm giá trị bé nhất của biểu thức \(A=x^2-2xy+2y^2+2x-10y+17\)
câu 5
1, tính giá trị của biểu thức sau:
a, \(x^2+2x+1
tại
x=99\)
b, \(x^3-3x^2+3x-1
tại
x=101\)
2, tìm giá trị lớn nhất của biểu thức
\(A=
-x^2+2xy-4y^2+2x+10y-3\)
1, a)
Ta có:
\(x^2+2x+1=\left(x+1\right)^2\)
Thay x=99 vào ta có:
\(\left(99+1\right)^2=100^2=10000\)
b) Ta có:
\(x^3-3x^2+3x-1=\left(x-1\right)^3\)
Thay x=101 vào ta có:
\(\left(101-1\right)^3=100^3=1000000\)
1) Tìm giá trị nhỏ nhất của các biểu thức: A=(x-3)^2+(x-4)^2,B= 5x^2+25y^2-20xy-2x-10y+2,C=(x+1).(x-2).(x-3).(x-6) 2) Tìm giá trị lớn nhất của các biểu thức :A=20+6x-3x^2,B=-x^2-10y^2+2xy-6x+18y=15
1) Cho a^2 + 1/a^2 =14 (với a>0) Tính giá trị của biểu thức M= a^5+1/a^5
2) Tìm giá trị lớn nhất của biểu thức A= 2xy-x^2-4y^2+2x+10y-2000
1) \(a^2+\frac{1}{a^2}=14\Leftrightarrow a^2+\frac{1}{a^2}+2a.\frac{1}{a}=16\Leftrightarrow\left(a+\frac{1}{a}\right)^2=16\Rightarrow a+\frac{1}{a}=4\)
\(\Rightarrow\left(a+\frac{1}{a}\right)\left(a^2+\frac{1}{a^2}\right)=a^3+\frac{1}{a}+a+\frac{1}{a^3}=a^3+4+\frac{1}{a^3}=4.14=56\)
\(\Rightarrow a^3+\frac{1}{a^3}=52\)
Ta có : \(\left(a^2+\frac{1}{a^2}\right)\left(a^3+\frac{1}{a^3}\right)=a^5+\frac{1}{a}+a+\frac{1}{a^5}=a^5+4+\frac{1}{a^5}=14.52\)
\(\Rightarrow a^5+\frac{1}{a^5}=14.52-4=724\)
2) \(A=2xy-x^2-4y^2+2x+10y-2000\)
\(=\left(-x^2+2xy-y^2\right)+\left(2x-2y\right)+\left(-3y^2+12y-12\right)-1988\)
\(=-\left(x-y\right)^2+2\left(x-y\right)-1-3\left(y^2-4y+4\right)-1987\)
\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2-1987\le-1987\forall x;y\) có GTLN là 2013
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y-1=0\\y-2=0\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}}\)
Vậy \(A_{max}=-1987\) tại \(x=3;y=2\)
Tìm giá trị lớn nhất của biểu thức
\(A= -x^2+2xy-4y^2+2x+10y-3\)
\(A=-x^2+2xy-4y^2+2x+10y-3\)
\(=10-\left(x^2+y^2+1-2xy-2x+2y\right)-3\left(y^2-4y+4\right)\)
\(=10-\left(x-y-1\right)^2-3\left(y-2\right)^2\le10\)
Vậy \(MaxA=10\), đạt được khi và chỉ khi \(\left\{{}\begin{matrix}x-y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
Tìm giá trị lớn nhất của biểu thức A= -x^2 + 2xy - 4y^2 + 2x + 10y - 3
Lời giải:
$-A=x^2-2xy+4y^2-2x-10y+3$
$=(x^2-2xy+y^2)+3y^2-2x-10y+3$
$=(x-y)^2-2(x-y)+3y^2-12y+3$
$=(x-y)^2-2(x-y)+1+3(y^2-4y+4)-10$
$=(x-y+1)^2+3(y-2)^2-10\geq 0+0-10=-10$
$\Rightarrow A\leq 10$
Vậy $A_{\max}=10$. Giá trị này đạt tại $x-y+1=y-2=0$
$\Leftrightarrow y=2; x=1$