Cho M là điểm trên nửa đường tròn lượng giác sao cho x O M ^ = 150 ° . Tọa độ của điểm M l
A . 1 2 ; 3 2
B . 3 2 ; 1 2
C . − 3 2 ; 1 2
D . 3 2 ; − 1 2
Cho nửa đường tròn tâm O đường kính AB = 2R. Trên nửa đường tròn lấy điểm C sao cho cba = 300. Trên tia tiếp tuyến Bx của nửa đường tròn lấy điểm M sao cho BM = BC.
a/ Tam giác ABC là tam giác gì ? Vì sao ?
b/ Chứng minh BMC đều.
c/ Chứng minh MC là tiếp tuyến của đường tròn tâm (O;R).
d/ OM cắt nửa đường tròn tại D và cắt BC tại E. Tính diện tích tứ giác OBDC theoR. câu d mọi người giải thích kĩ giùm nha=>
a: Xét (O) có
ΔABC nội tiếp
AB là đường kính
Do đó: ΔABC vuông tại C
b: Xét ΔBMC có BM=BC
nên ΔBMC cân tại B
mà \(\widehat{MBC}=60^0\)
nên ΔBMC đều
c: Xét ΔOBM và ΔOCM có
OB=OC
OM chung
BM=CM
Do đó: ΔOBM=ΔOCM
Suy ra: \(\widehat{OBM}=\widehat{OCM}=90^0\)
hay MC là tiếp tuyến của (O)
a)Từ điểm M nằm ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MC của đường tròn, A và C là các tiếp điểm. Kẻ đường kính BC. Biết 70 độ thì góc AMC bằng:
b)Cho đường tròn (O; 2cm). Từ điểm A sao cho OA = 4cm , vẽ hai tiếp tuyến AB, AC đến đường tròn (O) (B, C là tiếp điểm). Chu vi tam giác ABC bằng:
c)Cho nửa đường tròn tâm O, đường kính AB cm =10 . Điểm M thuộc nửa đường tròn. Qua M kẻ tiếp tuyến xy với nửa đường tròn. Gọi D và C lần lượt là hình chiếu của A, B trên xy. Diện tích lớn nhất của tứ giác ABCD là:
a, 700 góc nào bạn ?
b, Vì AB là tiếp tuyến (O) => ^ABO = 900
AO giao BC = K
AB = AC ; OB = OC = R
Vậy OA là đường trung trực đoạn BC
Xét tam giác ABO vuông tại B, đường cao BK
Áp dụng định lí Pytago tam giác ABO vuông tại B
\(AB=\sqrt{AO^2-BO^2}=\sqrt{16-4}=2\sqrt{3}\)cm
Áp dụng hệ thức : \(BK.AO=BO.AB\Rightarrow BK=\frac{BO.AB}{AO}=\frac{4\sqrt{3}}{4}=\sqrt{3}\)cm
Vì AO là đường trung trực => \(BC=2KB=2\sqrt{3}\)cm
Chu vi tam giác ABC là :
\(P_{ABC}=AB+AC+BC=2AB+BC=4\sqrt{3}+2\sqrt{3}=6\sqrt{3}\)cm
CẦN GẤPPPPPPPPPPPPPPPPPPPPPPPPPPP
vị trí của điểm C sao cho diện tích tứ giác AMNB là nhỏ nhất.
Bài 19. Cho nửa đường tròn (O), đường kính AB. Từ một điểm M trên nửa đường tròn (O)
hạ MH AB (với M khác A, B; H thuộc AB). Vẽ đường tròn (M) bán kính MH. Từ A và B
vẽ các tiếp tuyến với đường tròn (M), gọi các tiếp điểm theo thứ tự là C và D.
1. Chứng tỏ: AB là tiếp tuyến của đường tròn (M).
2. Chứng tỏ: 3 điểm C, M, D thẳng hàng và CD là tiếp tuyến của đường tròn (O).
3. Trong trường hợp đường thẳng CD cắt đường thẳng AB ở I;
Chứng minh: (AC +BD)2 = 4.IO.HO
4. Xác định vị trí của M trên nửa đường tròn (O) để tích AC.BD đạt giá trị lớn nhất
Trong mặt phẳng tọa độ Oxy, nửa đường tròn tâm O nằm phía trên trục hoành bán kính R = 1 được gọi là nửa đường tròn đơn vị (h.2.2). Nếu cho trước một góc nhọn α thì ta có thể xác định một điểm M duy nhất trên nửa đường tròn đơn vị sao cho ∠(xOM) = α. Giả sử điểm M có tọa độ (xo; yo).
Hãy chứng tỏ rằng sinα = yo, cosα = xo, tanα = yo/xo , cotα = xo/yo .
Gọi E, F lần lượt là hình chiếu của M trên Oy, Ox.
Khi đó xét ΔMOF vuông tại F thì :
1. Cho hai đường thẳng (d1): y=(2 + m)x +1 và (d2): y=1+ 2m)x +2
a) tìm m để (d1) và (d2) cắt nhau
b) với m= (-1), vẽ (d1) và (d2) trên cùng mặt phẳng tọa độ Qxy rồi tìm tọa độ giao điểm của hai đường thẳng bằng phép tính
2. Cho nửa đường tròn tâm O, đường kính AB. Kẽ các tiếp tuyến Ax, By cùng phía với nửa đường tròn đối với AB. Từ điểm M trên nửa đường tròn kẽ tiếp tuyến thứ ba với đường tròn, nó cắt Ax và By lần lượt tại C và D
a) Chúng minh tam giác COD là tam giác vuông
b) Chúng minh MC.MMD+OM^2
C) Cho biết OC=BA=2R, tính AC và BD theo R
Cho đường thẳng AB = 2a có trung điểm O. Trên cùng nửa mặt phẳng bờ AB dựng nửa đường tròn (O) đường kính AB và nửa đường tròn (O') đường kính AO. Trên (O') lấy điểm M ( khác A và O ), tia OM cắt đường tròn (O) tại C, gọi D là giao điểm thứ hai của CA với (O')
1) CMR tam giác ADM cân.
2) Tiếp tuyến tại C của (O) cắt tia OD tại E. Xác định vị trí tương đối của đường thẳng EA đối với đường tròn (O) và (O').
3) Đường thẳng AM cắt OD tại H, đường tròn ngoại tiếp tam giác COH cắt đường tròn (O) tại điểm thứ hai là N. CMR 3 điểm A,M,N thẳng hàng.
4) Tại vị trí điểm M sao cho ME // AB . Hãy tính độ dài đoạn thẳng OM theo a.
1) \(\Delta AOC\)cân tại O có OD là đường cao nên cũng là phân giác của \(\widehat{AOC}\), do đó \(\widehat{AOD}=\widehat{COD}\Rightarrow\widebat{AD}=\widebat{DM}\)
nên DA = DM. Vậy tam giác AMD cân tại D (đpcm)
2) Dễ thấy \(\Delta OEA=\Delta OEC\left(c-g-c\right)\), từ đó suy ra được \(\widehat{OAE}=\widehat{OCE}=90^0\)
Do đó \(AE\perp AB\). Vậy AE là tiếp tuyến chung của \(\left(O\right)\)và \(\left(O'\right)\)
3) Giả sử AM cắt \(\left(O\right)\)tại \(N'\). Ta có \(\Delta OAN'\)cân tại O và \(OM\perp AN'\)nên OM là đường trung trực của AN'. Từ đó ta được CA = CN'
Ta có \(\widehat{CN'A}=\widehat{CAM}\) mà \(\widehat{CAM}=\widehat{DOM}\), do đó \(\widehat{CN'H}=\widehat{COH}\). Suy ra bốn điểm C, N', O, H thuộc một đường tròn. Suy ra N' thuộc đường tròn ngoại tiếp \(\Delta CHO\). Do vậy \(N'\equiv N\)
Vậy ba điểm A, M, N thẳng hàng (đpcm)
4) Vì ME song song với AB và \(AB\perp AE\)nên \(ME\perp AE\)
Ta có hai tam giác MAO, EMA đồng dạng nên \(\frac{MO}{EA}=\frac{MA}{EM}=\frac{AO}{MA}\Rightarrow MA^2=AO.EM\)
Dễ thấy \(\Delta MEO\) cân tại M nên ME MO. = Thay vào hệ thức trên ta được\(MA^2=AO.MO\)
Đặt MO = x > 0 \(\Rightarrow MA^2=OA^2-MO^2=a^2-x^2\)
Từ \(MA^2=AO.MO\) suy ra \(a^2-x^2=ax\Leftrightarrow x^2+ax-a^2=0\)
Từ đó tìm được \(x=\frac{\left(\sqrt{5}-1\right)a}{2}\)
Vậy \(OM=\frac{\left(\sqrt{5}-1\right)a}{2}\)
Câu 1: Cho nửa đường trường tâm O đường kính AB = 2R. Trên nửa đường tròn lấy điểm C sao cho góc CBA= 30o. Trên tia tiếp tuyến Bx của nửa đường tròn lấy điểm M sao cho BM= BC
a) Tam giác ABC là tam giác gì? Vì sao?
b) Chứng minh ΔBMC đều
c) CM MC là tiếp tuyến của đường tròn tâm (O: R)
d) OM cắt nửa đường tròn tại D và cắt BC tại E. Tính diện tích tứ giác OBDC theo R
(mink đag cần gấp)
a) Xét (O) có
ΔABC nội tiếp đường tròn(A,B,C∈(O))
AB là đường kính(gt)
Do đó: ΔABC vuông tại C(Định lí)
b) Ta có: \(\widehat{ABC}+\widehat{CBM}=\widehat{ABM}\)(tia BC nằm giữa hai tia BA,BM)
\(\Leftrightarrow\widehat{CBM}+30^0=90^0\)
hay \(\widehat{CBM}=60^0\)
Xét ΔBMC có BM=BC(gt)
nên ΔBMC cân tại B(Định nghĩa tam giác cân)
Xét ΔBMC cân tại B có \(\widehat{CBM}=60^0\)(cmt)
nên ΔBMC đều(Dấu hiệu nhận biết tam giác đều)
c) Xét ΔOBM và ΔOCM có
OB=OC(=R)
OM chung
BM=CM(ΔBMC đều)
Do đó: ΔOBM=ΔOCM(c-c-c)
Suy ra: \(\widehat{OBM}=\widehat{OCM}\)(hai góc tương ứng)
mà \(\widehat{OBM}=90^0\left(gt\right)\)
nên \(\widehat{OCM}=90^0\)
hay OC⊥CM tại C
Xét (O) có
OC⊥CM tại C(cmt)
OC là bán kính(C∈(O))
Do đó: CM là tiếp tuyến của (O)(Dấu hiệu nhận biết tiếp tuyến đường tròn)
Cho nửa đường tròn tâm O đường kính AB. Trên nửa đường tròn lấy các điểm E và D khác A, B sao cho E nằm trên cung AD. Gọi H là giao điểm của AD và BE, C là giao điểm AE và BD. M là hình chiếu của H trên AB.
a) Chứng minh tứ giác BDHM là tứ giác nội tiếp.
b) Gọi K là giao điểm của MD và BH, chứng minh BK.HE = BE.HK
c) Gọi I là tâm đường tròn ngoại tiếp tam giác CDE. Chứng minh IE là tiếp tuyến của đường tròn tâm O.
a. Em tự giải
b.
Do tứ giác BDHM nội tiếp \(\Rightarrow\widehat{HDM}=\widehat{HBM}\) (cùng chắn cung HM)
Do tứ giác ABDE nội tiếp \(\Rightarrow\widehat{HBM}=\widehat{ADE}\) (cùng chắn cung AE)
\(\Rightarrow\widehat{HDM}=\widehat{ADE}\)
\(\Rightarrow DH\) là phân giác trong góc \(\widehat{EDK}\) của tam giác EDK
Lại có \(DH\perp DB\) (góc nội tiếp chắn nửa đường tròn)
\(\Rightarrow DB\) là phân giác ngoài góc \(\widehat{EDK}\) của tam giác EDK
Áp dụng định lý phân giác:
\(\dfrac{EH}{HK}=\dfrac{EB}{BK}=\dfrac{ED}{DK}\) \(\Rightarrow BK.HE=BE.HK\)
c.
Hai điểm D và E cùng nhìn CH dưới 1 góc vuông nên tứ giác CDHE nội tiếp đường tròn đường kính CH
\(\Rightarrow I\) là trung điểm CH
Trong tam giác ABC, do hai đường cao AD và BE cắt nhau tại H \(\Rightarrow H\) là trực tâm
\(\Rightarrow CH\perp AB\) hay C;H;M thẳng hàng
Ta có \(IC=IE\) (do I là tâm đường tròn ngoại tiếp CDE) \(\Rightarrow\Delta CIE\) cân tại I
\(\Rightarrow\widehat{ECI}=\widehat{CEI}\)
Lại có \(OB=OE=R\Rightarrow\Delta OBE\) cân tại O \(\Rightarrow\widehat{OBE}=\widehat{OEB}\)
Mà \(\widehat{OBE}=\widehat{ECI}\) (cùng phụ \(\widehat{BAC}\))
\(\Rightarrow\widehat{CEI}=\widehat{OEB}\)
\(\Rightarrow\widehat{CEI}+\widehat{IEB}=\widehat{OEB}+\widehat{IEB}\)
\(\Rightarrow\widehat{CEB}=\widehat{OEI}\)
\(\Rightarrow\widehat{OEI}=90^{ }\)
Hay \(OE\perp IE\Rightarrow IE\) là tiếp tuyến của đường tròn tâm O
Cho nửa đường tròn tâm O đường kính AB = 2R. Vẽ tia tiếp tuyến Ax. Từ điểm M trên Ax kẻ MC (C nằm trên nữa đường tròn và khác A) sao cho MA bằng MC. Nối M với O; MB cắt nửa đường tròn (O) tại D.
a. Chứng minh: AMCO là tứ giác nội tiếp đường tròn. Xác định tâm I của đường tròn.
b. Chứng minh: MC là tiếp tuyến; MC2 = MD.MB.
a: Xét ΔMAO và ΔMCO có
MA=MC
AO=CO
MO chung
=>ΔMAO=ΔMCO
=>góc MCO=90 độ
góc MAO+góc MCO=180 độ
=>MAOC nội tiếp đường tròn đường kính MO
=>I là trung điểm của MO
b: góc MCO=90 độ
=>MC là tiếp tuyến của (O)
Xét ΔMCD và ΔMBC có
góc MCD=góc MBC
góc CMD chung
=>ΔMCD đồng dạng với ΔMBC
=>MC/MB=MD/MC
=>MC^2=MB*MD