Chứng minh rằng: nếu 6x+11y cha hết 31 thì x+7y:31
( Làm Luôn Nhanh Và Gấp. Mình Đang Cần )
a) nếu ( 6x + 11y) chia hết cho 31 thì (x+7y) chia hết cho 31
nhanh lên nhé!!!!! Mình đang cần gấp!
Vì 6x+11y chia hết cho 31
=> 6x+11y+31y chia hết cho 31 (31y chia hết cho 31)
=> 6x+42y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Mà (6;31)=1 nên x+7y chia hết cho 31 (đpcm)
Chứng minh rằng: nếu 6x+11y cha hết 31 thì x+7y:31\
Chứng tỏ rằng nếu : 6x + 11y chia hết cho 31 thì x + 7y chia hết cho 31
Giúp mk với !! Ai nhanh và đúng mk tick, mk đang càn gấp lắm ạ !
6x + 11y chia hết cho 31
=> 6x + 11y + 31y chia hết cho 31 vì 31y chia hết cho 31
=> 6x + 42y chia hết cho 31
=> 6(x + 7y) chia hết cho 31
=> x + 7y chia hết cho 31 vì 6 và 31 là hai số nguyên tố cùng nhau
=> đpcm
chứng minh rằng nếu 6x +11y chia hết cho 31 và x, y thuộc Z thì x+ 7y cũng chia hết cho 31
6x+11y chia hết cho 31
=>6(6x+11y) chia hết cho 31
=>36x+66y chia hết cho 31
=>31x+31y+5x+35y chia hết cho 31
Vì 31(x+y) chia hết cho 31=>5(x+7y) chia hết cho 31
Mà ƯCLN(5;31)=1=>x+7y chia hết cho 31
x+7y chia hết cho 31
=>6(x+7y) chia hết cho 31
=>6x+42y chia hết cho 31
=>6x+11y+31y chia hết cho 31
Vì 31y chia hết cho 31=>6x+11y chia hết cho 31
Ta xét : P= \(6\left(x+7y\right)-\left(6x+11y\right)\)=\(6x+42y-6x-11y\)=\(31y⋮31\)
Mặt khác: \(6x+11y⋮31\)
=> \(6\left(x+7y\right)⋮31\)(1)
Mà \(ƯCLN_{\left(6;31\right)}=1\)(2)
Từ (1)(2)=> x+7y chia hết cho 11(đpcm)
Ta xét: P=\(6\left(x+7y\right)-\left(6x+11y\right)\)=\(6x+42y-6x-11y\)=\(31y⋮31\)
Mặt khác: \(6x+11y⋮31\)
=> \(6\left(x+7y\right)⋮31\)(1)
Mà \(ƯCLN_{\left(6;31\right)}=1\left(2\right)\)
Từ (1)(2)=> x+7y chia hết cho 31(đpcm)
Cho x;y thuộc n biết 6x+11y chia hết cho 31 chứng minh rằng x=7y chia hết cho 31
ai làm đúng và nhanh nhất mình tick cho
Những đứa viết ''chtt'' là những đứa học dốt,lười suy nghĩ,chỉ biết ăn hôi bài người khác để kiếm tick
=>đó là những đứa nhục nhã,tham lam,lười biếng.
Ta có
6x+11y chia hết cho 31
=>6x+11y+31y cũng cua hết cho 31
<=>6x+42y chia hết cho 31
<=>6(x+7y) chia hết cho 31
Vì 6 không chia hết cho 31
=>x+7y chia hết cho 31
Và điều ngược lại đúng,bạn tự CM điều ngược lại nha
Nếu thấy bài làm của mình đúng thì tick nha bạn,cảm ơn nhiều.
cho x,y thuộc Z. Chứng tỏ rằng:
a, Nếu 6x + 11y chia hết cho 31 thì x + 7y chia hết cho 31
b, Nếu x + 7y chia hết cho 31 thì 6x + 11y chia hết cho 31
có : 6(x + 7y) = 6x + 42y = 6x + 11y + 31y
6x + 11y chia hết cho 31; 31y chia hết cho 31
=> 6(x + 7y) chia hết cho 31
=> x + 7y chia hết cho 31
làm ngược lại
Gọi A = 6x + 7y − 6x + 11y
⇒A = 6x + 42y − 6x − 11y
=> A = y(42 − 11)= 31y
Vì 31y chia hết cho 31 và 6x + 11y chia hết cho 31
Nên 6 (x+7y) chia hết cho 31.
Do ƯCLN(6;31) = 1 nên x+7y chia hết cho 31
Vậy : Nếu 6x + 11y chia hết cho 31 thì x + 7y chia hết cho 31
x+7y chia hết cho 31
=>6(x+7y) chia hết cho 31
=>6x+42y chia hết cho 31
=>6x+11y+31y chia hết cho 31
Vì 31y chia hết cho 31=>6x+11y chia hết cho 31
zậy ...
Chứng minh rằng nếu 6x +11y chia hết 31 , x , y thuộc Z thì x + 7y cùng chia hết 31
Giải cách làm thật rõ nhé !
6x+11y chia hết 31
=>6x+11y+31y chia hết 31
=> 6x+42y chia hết 31
=> 6(x+7y) chia hết 31
Vì 6 và 31 nguyên tố cùng nhau
=> x+7y chia hết 31
Vậy........
Bạn có hiểu không? Không hiểu thì hỏi nhé!
Cho x,y thuộc Z. Chứng tỏ rằng nếu 6x + 11y chia hết cho 31 thì x + 7y cũng chia hết cho 31.
Ngược lại x + 7y chia hết cho 31 thì 6x + 11y cũng chia hết cho 31.
a:
6x+11y chia hết cho 31
=>6x+11y+31y chia hết cho 31
=>6x+42y chia hết cho 31
=>x+7y chia hết cho 31
b: x+7y chia hết cho 31
=>6x+42y chia hét cho 31
=>6x+11y chia hết cho 31
chứng minh rằng
Nếu 6x+11y chia hết cho 31 thì x +7y chia hết cho 31 (vs mọi n)
Đặt A = 6x + 11y; B = x + 7y
Xét hiệu: 6B - A = 6.(x + 7y) - (6x + 11y)
= 6x + 42y - 6x - 11y
= 31y
Do A chia hết cho 31; 31y chia hết cho 31
=> 6B chia hết cho 31
Mà (6;31)=1 => B chia hết cho 31 hay x + 7y chia hết cho 31 (đpcm)
cho x,y\(\in\) Z. Chứng tỏ rằng nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31. Ngược lại x+7y chia hết cho 31 thì 6x+11y cũng chia hết cho 31