Biết A= lim x → 0 cos x - cos x 3 sin 2 x = a b ; với a b là phân số tối giản và a > b , khi đó a 2 - b bằng:
A.13
B.-12
C.-11
D.11
Biết lim x -> +∞ f(x) = M ;lim x -> +∞ g(x) = 0 Chọn khẳng định đúng? A. Lim x -> +∞ f(x)/g(x)= +∞ B. Lim x -> +∞ = f(x)/g(x)= -∞ C. Lim x -> +∞ f(x)/g(x)=0 D. Limx -> +∞ [g(x).f(x)]=0
Tính giới hạn:
lim(x tới 0)\(\frac{\cos\sqrt{x}-1}{ln\left(x+1\right)}\)
\(\lim\limits_{x\rightarrow0}\dfrac{cos\sqrt{x}-1}{ln\left(x+1\right)}=-\dfrac{1}{2}\).
1) lim \(\frac{-x^2+3x}{x^3-2x^2+x}\) (x->1)
2) lim \(\frac{\sqrt{1+2x}-\sqrt[3]{1+3x}}{x^2}\) (x->0)
3) lim \(\frac{x\sqrt[3]{x^3+1
}}{2-x\sqrt{1+4x^2}}\) (x-> âm vô cùng )
4) lim \(\frac{\cos^9x-1}{x}\) (x->0)
giúp mình với ạ
Bài 1
a. \(\lim\limits_{x\rightarrow+\infty}\frac{1+2\sqrt{x}-x}{x+3}\) b. \(\lim\limits_{x\rightarrow+\infty}\frac{x^3+3x-1}{x^2\sqrt{x}+x}\) c. \(\lim\limits_{x\rightarrow-\infty}\frac{x+2\sqrt{1-x}}{1-x}\)
Bài 2: Tính các giới hạn sau biết \(\lim\limits_{x\rightarrow0}\frac{\sin x}{x}=1\)
a. \(\lim\limits_{x\rightarrow0}\frac{1-\cos x}{1-\cos3x}\) b. \(\lim\limits_{x\rightarrow0}\frac{\cot x-\sin x}{x^3}\) c. \(\lim\limits_{x\rightarrow\infty}\frac{x.\sin x}{2x^2}\)
Bài 1:
\(a=\lim\limits_{x\rightarrow+\infty}\frac{\frac{1}{x}+\frac{2}{\sqrt{x}}-1}{1+\frac{3}{x}}=-1\)
\(b=\lim\limits_{x\rightarrow+\infty}\frac{1+\frac{3}{x^2}-\frac{1}{x^3}}{\frac{1}{\sqrt{x}}+\frac{1}{x^2}}=\frac{1}{0}=+\infty\)
\(c=\lim\limits_{x\rightarrow-\infty}\frac{1-2\sqrt{\frac{1}{x^2}-\frac{1}{x}}}{\frac{1}{x}-1}=\frac{1}{-1}=-1\)
Bài 2:
\(a=\lim\limits_{x\rightarrow0}\frac{1-cosx}{1-cos3x}=\lim\limits_{x\rightarrow0}\frac{sinx}{3sin3x}=\lim\limits_{x\rightarrow0}\frac{\frac{sinx}{x}}{9.\frac{sin3x}{3x}}=\frac{1}{9}\)
\(b=\lim\limits_{x\rightarrow0}\frac{cotx-sinx}{x^3}=\frac{\infty}{0}=+\infty\)
\(c=\lim\limits_{x\rightarrow\infty}\frac{sinx}{2x}\)
Mà \(\left|sinx\right|\le1\Rightarrow\left|\frac{sinx}{2x}\right|\le\frac{1}{\left|2x\right|}\)
Mà \(\lim\limits_{x\rightarrow\infty}\frac{1}{2\left|x\right|}=0\Rightarrow\lim\limits_{x\rightarrow\infty}\frac{sinx}{2x}=0\)
tính \(\lim\limits_{x\rightarrow0}x.\cos\dfrac{2}{x}\)
thầy cô và các bạn biết câu nào giúp mình câu đó em rất cảm ơn ạ
lim \(\dfrac{3x-5sin2x+cos^2x}{x^2+2}\)
x-> +∞
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{3x}{x^2+2}-\lim\limits_{x\rightarrow+\infty}\dfrac{5\sin2x}{x^2+2}+\lim\limits_{x\rightarrow+\infty}\dfrac{\cos^2x}{x^2+2}\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{3x}{x^2+2}=\lim\limits_{x\rightarrow+\infty}\dfrac{\dfrac{3x}{x^2}}{\dfrac{x^2}{x^2}+\dfrac{2}{x^2}}=0\)
\(-1\le\sin2x\le1\Rightarrow\dfrac{-5}{x^2+2}\le\dfrac{5\sin2x}{x^2+2}\le\dfrac{5}{x^2+2}\)
\(\lim\limits_{x\rightarrow+\infty}-\dfrac{5}{x^2+2}=\lim\limits_{x\rightarrow+\infty}\dfrac{5}{x^2+2}=0\Rightarrow\lim\limits_{x\rightarrow+\infty}\dfrac{5\sin2x}{x^2+2}=0\)
\(0\le\cos^2x\le1\Rightarrow0\le\dfrac{\cos^2x}{x^2+2}\le\dfrac{1}{x^2+2}\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{1}{x^2+2}=0\Rightarrow\lim\limits_{x\rightarrow+\infty}\dfrac{\cos^2x}{x^2+2}=0\)
\(\Rightarrow\lim\limits_{x\rightarrow+\infty}\dfrac{3x-5\sin2x+\cos^2x}{x^2+2}=0\)
tính \(\lim\limits_{x\rightarrow0}\dfrac{1-\cos x\cdot\cos3x}{x^2}\)
Tìm giới hạn : \(L=\lim\limits_{x\rightarrow0}\frac{\sqrt[4]{\cos x}-\sqrt[5]{\cos x}}{\sin^2x}\)
Đổi biến \(\cos x=y^{20}\). Khi \(x\rightarrow0\) thì \(y\rightarrow0\). Ta có :
\(L=\lim\limits_{y\rightarrow0}\frac{y^5-y^4}{1-y^{40}}=-\lim\limits_{y\rightarrow0}\frac{y^4\left(y-1\right)}{y^{40}-1}\)
\(=-\lim\limits_{y\rightarrow0}\frac{y-1}{\left(y-1\right)\left(y^{39}+y^{38}+.....+y+1\right)}=-\frac{1}{40}\)
tính \(\lim\limits_{x\rightarrow\dfrac{\pi}{4}}\dfrac{\sin x-\cos x}{1-\tan x}\)