Cho hàm số f x = 3 x - 2 , có ∆x là số gia của đối số tại x=2. Khi đó ∆y/∆x bằng:
A. 3 ∆ x - 2 ∆ x
B. 3 ∆ x - 6 ∆ x
C. 3 ∆ x + 4 - 2 ∆ x
D. 3 ∆ x - 2 - 2 ∆ x
Cho hàm số f ( x ) = x 2 + 2 x ,có ∆x là số gia của đối số tại x=1, ∆y là số gia tương ứng của hàm số. Khi đó ∆y bằng:
A. ( ∆ x ) 2 + 2 ∆ x
B. ( ∆ x ) 2 + 4 ∆ x
C. ( ∆ x ) 2 + 2 ∆ x - 3
D. 3
∆y=f(1+∆x)-f(1)=(1+∆x)2+2(1+∆x)-(1+2)=(∆x)2+4∆x
Đáp án B
Chú ý. Tránh các sai lầm thay trực tiếp ∆x hoặc 1 vào hàm (A,D) hoặc lấy hiệu của f(∆x) và f(1) (C)
Cho hàm số y = x ,∆x là số gia của đối số tại x. Khi đó ∆y/∆x bằng:
A. ∆ x - x ∆ x
B. ∆ x - x ∆ x
C. x + ∆ x - ∆ x ∆ x
d. 1 x + ∆ x + ∆ x
số gia của hàm số y = f(x) = \(\dfrac{^{x^3}}{2}\) ứng với số gia △t của đối số tại x\(_0\) = -1 là :
Số gia của hàm \(f\left(x\right)\) phải ứng với số gia \(\Delta x\) của đối số chứ sao lại \(\Delta t\), em kiểm tra lại đề bài
Cho hàm số y=f(x) có đạo hàm là
f ' ( x ) = ( x − 1 ) 2 ( x + 2 ) 3 ( 3 − x ) . Khi đó số điểm cực trị của hàm số là
A. 0
B. 1
C. 2
D. 3
Đáp án C
Do y ' chỉ đổi dấu tại x = -2, x = 3. Nên hàm số đã cho có 2 điểm cực trị
Cho y = f ( x ) có đạo hàm f ' ( x ) = ( x - 2 ) ( x - 3 ) 2 . Khi đó số cực trị của hàm số y = f ( 2 x + 1 ) là
A. 0
B. 2
C. 1
D. 3
Cho hàm số y = f(x) có đạo hàm f ' ( x ) = x ( x 2 − 1 ) 2 ( x + 2 ) 3 . Khi đó số điểm cực trị của hàm số y = f x 2 là bao nhiêu?
A. 1
B. 2
C. 3
D. 4
Cho hàm số y=f(x) có đạo hàm là f ' ( x ) = ( x - 1 ) 2 ( x + 2 ) ( 3 - x ) . Khi đó số điểm cực trị hàm số là
A. 0
B. 1
C. 2
D. 3
Cho hàm số y = f ( x ) có f ( 2 ) = 2 , f ( 3 ) = 5 ; hàm số y = f ' ( x ) liên tục trên [2;3]. Khi đó ∫ 2 3 f ' ( x ) d x bằng:
A. 3
B. -3
C. 10
D. 7
Cho hàm số y = f ( x ) có f ( 2 ) = 2 , f ( 3 ) = 5 hàm số y = f ' ( x ) liên tục trên [2;3]. Khi đó ∫ 2 3 f ' ( x ) d x bằng: