∆y=f(1+∆x)-f(1)=(1+∆x)2+2(1+∆x)-(1+2)=(∆x)2+4∆x
Đáp án B
Chú ý. Tránh các sai lầm thay trực tiếp ∆x hoặc 1 vào hàm (A,D) hoặc lấy hiệu của f(∆x) và f(1) (C)
∆y=f(1+∆x)-f(1)=(1+∆x)2+2(1+∆x)-(1+2)=(∆x)2+4∆x
Đáp án B
Chú ý. Tránh các sai lầm thay trực tiếp ∆x hoặc 1 vào hàm (A,D) hoặc lấy hiệu của f(∆x) và f(1) (C)
số gia của hàm số y = f(x) = \(\dfrac{^{x^3}}{2}\) ứng với số gia △t của đối số tại x\(_0\) = -1 là :
Cho hàm số f x = 3 x - 2 , có ∆x là số gia của đối số tại x=2. Khi đó ∆y/∆x bằng:
A. 3 ∆ x - 2 ∆ x
B. 3 ∆ x - 6 ∆ x
C. 3 ∆ x + 4 - 2 ∆ x
D. 3 ∆ x - 2 - 2 ∆ x
2. Số gia của hàm số y = 2x^2 -3x +1 theo x và denta x là? 3. Số gia của hàm số y = ✓2x^2 +1 theo x và denta x là?
Cho hàm số y = x ,∆x là số gia của đối số tại x. Khi đó ∆y/∆x bằng:
A. ∆ x - x ∆ x
B. ∆ x - x ∆ x
C. x + ∆ x - ∆ x ∆ x
d. 1 x + ∆ x + ∆ x
1. đạo hàm của hàm số f(x) = 2x - 5 tại \(x_0=4\)
2. đạo hàm của hàm số \(y=x^2-3\sqrt{x}+\dfrac{1}{x}\)
3. đạo hàm của hàm số \(f\left(x\right)=\dfrac{x+9}{x+3}+4\sqrt{x}\) tại điểm x = 1
Cho hàm số f(x) = x 2 - x , đạo hàm của hàm số ứng với số gia của đối số x tại x 0 là
A. lim ∆ x → 0 ∆ x 2 + 2 x ∆ x - ∆ x
B. lim Δ x → 0 ( Δ x + 2 x − 1 )
C. lim ∆ x → 0 ∆ x + 2 x + 1
D. lim ∆ x → 0 ∆ x 2 + 2 x ∆ x + ∆ x
1) đạo hàm của hàm số \(y=x^2-3\sqrt{x}+\dfrac{1}{x}\)
2) đạo hàm của hàm số \(f\left(x\right)=\dfrac{x+9}{x+3}+4\sqrt{x}\) tại điểm x = 1
Cho hàm số f ( x ) = x 2 - x , đạo hàm của hàm số ứng với số gia Δx của đối số x tại x 0 là
A. lim ∆ x → 0 ∆ x 2 + 2 x ∆ x - ∆ x
B. lim ∆ x → 0 ∆ x + 2 x - 1
C. lim ∆ x → 0 ∆ x + 2 x + 1
D. lim ∆ x → 0 ∆ x 2 + 2 x ∆ x + ∆ x
Cho hàm số f ( x ) = x 2 - x , đạo hàm của hàm số ứng với số gia Δx của đối số x tại x 0 là:
A. lim ∆ x → 0 ∆ x 2 - 2 x 0 ∆ x - ∆ x
B. lim ∆ x → 0 ∆ x + 2 x 0 - 1
C. lim ∆ x → 0 ∆ x + 2 x 0 + 1
D. lim ∆ x → 0 ∆ x 2 + 2 x 0 ∆ x + ∆ x