Cho đường thẳng d: y = a x + b ( a < 0 ) . Gọi là góc tạo bởi tia Ox và d. Khẳng định nào dưới đây là đúng?
A. tan α < 0
B. tan α > 0
C. t a n α = 0
D. tan α = 1
cho hàm só y=ax-2 (a≠0), có đồ thị đường thẳng (d)
a) xác định a, biết (d) song song với đường thẳng y=1-3x. vẽ đường thẳng (d)
b) tìm tọa độ giao điểm của đường thẳng (d) và đường thẳng (d'): y=x+6
a.
- Đường thẳng (d) song song với y = 1 - 3x nên ta có:
\(a=-3\)
\(\rightarrow\) Hàm số có dạng \(y=-3x-2\)
- Vẽ đường thẳng \(\left(d\right):y=-3x-2\)
+ Giao với trục Oy: \(x=0\rightarrow y=-2\Rightarrow A\left(0;-2\right)\)
+ Giao với trục Ox: \(y=0\rightarrow x=-\dfrac{2}{3}\Rightarrow B\left(-\dfrac{2}{3};0\right)\)
Nối 2 điểm A và B ta được đường thẳng (d)
b.
- Gọi tọa độ giao điểm của đường thẳng \(\left(d\right)\) và \(\left(d'\right):y=x+6\) là: \(\left(x_0;y_0\right)\)
- Vì \(\left(x_0;y_0\right)\) thuộc đường thẳng \(\left(d\right)\) nên ta có:
\(y_0=-3x_0-2\) (1)
- Vì \(\left(x_0;y_0\right)\) thuộc đường thẳng \(\left(d'\right):y=x+6\) nên ta có:
\(y_0=x_0+6\) (2)
- Từ (1) và (2), ta có:
\(-3x_0-2=x_0+6\)
\(\Leftrightarrow-3x_0-x_0=6+2\)
\(\Leftrightarrow-4x_0=8\)
\(\Leftrightarrow x_0=-2\)
\(\rightarrow y_0=-2+6=4\)
Vậy tọa độ giao điểm 2 đường thẳng đó là: \(\left(-2;4\right)\)
cho đường thẳng (D) y=3x-1và (D)y-x+2
viết phương trình đường thẳng (D) ax+b(a khác 0) bt (D2) song song vs(D) và đi điểm a
: Cho đường thẳng: (d): y = (2m – 1)x + m – 2.
1) Tìm m để đường thẳng (d):
a. Đi qua điểm A(1; 6).
b. Song song với đường thẳng 2x + 3y – 5 = 0.
c. Vuông góc với đường thẳng x + 2y + 1 = 0.
2) Tìm điểm cố định mà (d) luôn đi qua với mọi m.
mn giảng giúp mình với, tại mình không hiểu ý ạ:( camon mn nhiều ạ
1.
\(a,\Leftrightarrow2m-1+m-2=6\Leftrightarrow3m=9\Leftrightarrow m=3\\ b,2x+3y-5=0\Leftrightarrow3y=-2x+5\Leftrightarrow y=-\dfrac{2}{3}x+\dfrac{5}{3}\)
Để \(\left(d\right)\text{//}y=-\dfrac{2}{3}x+\dfrac{5}{3}\Leftrightarrow\left\{{}\begin{matrix}2m-1=-\dfrac{2}{3}\\m-2\ne\dfrac{5}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{1}{6}\\m\ne\dfrac{11}{3}\end{matrix}\right.\Leftrightarrow m=\dfrac{1}{6}\)
\(c,x+2y+1=0\Leftrightarrow2y=-x-1\Leftrightarrow y=-\dfrac{1}{2}x-\dfrac{1}{2}\\ \left(d\right)\bot y=-\dfrac{1}{2}x-\dfrac{1}{2}\Leftrightarrow\left(-\dfrac{1}{2}\right)\left(2m-1\right)=-1\\ \Leftrightarrow\dfrac{1}{2}\left(2m-1\right)=1\Leftrightarrow m-\dfrac{1}{2}=1\Leftrightarrow m=\dfrac{3}{2}\)
2.
Gọi điểm cố định đó là \(A\left(x_0;y_0\right)\)
\(\Leftrightarrow y_0=\left(2m-1\right)x_0+m-2\\ \Leftrightarrow2mx_0+m-x_0-2-y_0=0\\ \Leftrightarrow m\left(2x_0+1\right)-\left(x_0+y_0+2\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x_0=-1\\x_0+y_0+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-\dfrac{1}{2}\\y_0=-\dfrac{3}{2}\end{matrix}\right.\)
Câu 26: Đường thẳng y = -x + 5 cắt trục hoành tại điểm nào?
A. (-5; 0) B. (1; 0) C. (5; 0) D. (1; 4)
Câu 27: Đường thẳng y = 2x – 1 cắt trục tung tại điểm nào?
A. (0; -1) B. (0; 1) C. (1/2;0) D. (-1; 0)
Câu 28: Đường thẳng y = 3x + 2 và đường thẳng y = -x + 6 cắt nhau tại điểm:
A. (1; 5) B . (2; 7) C. (2; 4) D. (4; 14).
Câu 29: Điểm thuộc đường thẳng y = 4x - 2 là:
A. (0; 2) B . (3; 1) C. (2; 6) D. (1; 6).
Câu 30: Đồ thị của hàm số y = 2x + 3 là đường thẳng đi qua hai điểm phân biệt sau
A. (0; 3) và (3; 0) C. (0; 3) và (1,5; 2)
C. (0; 3) và (1; 5) D. (3; 0) và (1,5; 0)
Câu 31: Đồ thị của hàm số y = ax + b (a ≠ 0) là
một đường cong Parabol.
một đường thẳng đi qua hai điểm (0; b) và ((-b)/a;0)
một đường thẳng đi qua gốc toạ độ.
một đường thẳng đi qua hai điểm (b; 0) và (0; b)
Câu 32: Khẳng định nào về hàm số y = x + 3 là sai
A. Cắt Oy tại (0; 3) B. Nghịch biến trên
C. Cắt Ox tại (-3; 0) D. Đồng biến trên
Câu 33: Góc tạo bởi đường thẳng: y = với trục Ox bằng
A. 300 B . 300 C. 450 D. 600.
1.Tìm x: √3 x-√3=2x
2.Cho đường thẳng (d) :y=ã+b, với a,v thỏa mãn 3a2 -b=0 và a khác 0.Hãy xác định các hệ số a,b biết rằng đường thẳng (d) vuông góc với đường thẳng (d'): y=1/√2.x+2016
\(\sqrt{3}x-\sqrt{3}=2x\Leftrightarrow\sqrt{3}=\sqrt{3}x-2x\\ \Leftrightarrow\sqrt{3}=x\left(\sqrt{3}-2\right)\Leftrightarrow x=\frac{\sqrt{3}}{\sqrt{3}-2}\)
2) vì đường thăngr (d) ⊥ vs đt (d)' nên :
\(b\ne b'\Rightarrow b\ne2016\)
\(a.a'=-1\) \(hay\) \(a.\frac{1}{2}=-1\Leftrightarrow a=-2\)
thay a = - 2 vào pt 3a2 - b =0 ta đc:
\(3.\left(-2\right)^2-b=0\Rightarrow12-b=0\Rightarrow b=12\left(thoadk\right)\)
Vậy ...........................................................................................
a. Không sử dụng máy tính cầm tay, giải hệ phương trình $\left\{ \begin{aligned} & 4x - y = 7\\ & x + 3y = 5\\ \end{aligned}\right.$.
b. Cho đường thẳng $d:$ $y = ax + b$. Tìm giá trị của $a$ và $b$ sao cho đường thẳng $d$ đi qua điểm $A ( 0; -1)$ và song song với đường thẳng $\Delta :$ $y = x + 2019$.
a, \(\hept{\begin{cases}4x-y=7\\x+3y=5\end{cases}}\Leftrightarrow\hept{\begin{cases}y=4x-7\left(1\right)\\x+3y=5\left(2\right)\end{cases}}\)
Thế (1) vào (2) ta được : \(x+3\left(4x-7\right)=5\Leftrightarrow x+12x-21=5\)
\(\Leftrightarrow13x=26\Leftrightarrow x=2\)
Theo (1) ta có : \(y=8-7=1\)
Vậy \(\left(x;y\right)=\left(2;1\right)\)
a, x = 2 , y = 1
b, a = 1 , b = -1
Trong hệ tọa độ Oxy, cho A (1;1) và hai đường thẳng d1: x + y = 0, d2 : x –y +1 = 0.
Gọi d là đường thẳng qua A và cắt d1; d2 lần lượt tại B và C sao cho 2AB = AC.
Viết phương trình tổng quát đường thẳng d.
Cho hai đường thẳng (D): y = - x - 4 và (D1) : y = 3x + 2
a) Vẽ đồ thị (D) và (D1) trên cùng 1 mặt phẳng tọa độ Oxy
b) Xác định tọa độ giao điểm A của hai đường thẳng (D) và (D1) bằng phép toán
c) Viết phương trình đường thẳng (D2): y = ax + b (a ≠ 0) song song với đường thẳng (D) và đi qua điểm B(-2;5)
b) Vì A(xA;yA) là giao điểm của (D) và (D1) nên Hoành độ của A là nghiệm của phương trình hoành độ giao điểm có hai vế là hai hàm số của (D) và (D1)
hay \(-x-4=3x+2\)
\(\Leftrightarrow-x-4-3x-2=0\)
\(\Leftrightarrow-4x-6=0\)
\(\Leftrightarrow-4x=6\)
hay \(x=-\dfrac{3}{2}\)
Thay \(x=-\dfrac{3}{2}\) vào hàm số y=-x-4, ta được:
\(y=-\left(-\dfrac{3}{2}\right)-4=\dfrac{3}{2}-4=\dfrac{3}{2}-\dfrac{8}{2}=-\dfrac{5}{2}\)
Vậy: \(A\left(-\dfrac{3}{2};-\dfrac{5}{2}\right)\)
c) Vì (D2) song song với (D) nên a=-1
hay (D2): y=-x+b
Vì (D2) đi qua điểm B(-2;5)
nên Thay x=-2 và y=5 vào hàm số y=-x+b, ta được:
-(-2)+b=5
hay b=5-2=3
Vậy: (D2): y=-x+3
b) Vì A(xA;yA) là giao điểm của (D) và (D1) nên Hoành độ của A là nghiệm của phương trình hoành độ giao điểm có hai vế là hai hàm số của (D) và (D1)
hay \(-x-4=3x+2\)
\(\Leftrightarrow-x-4-3x-2=0\)
\(\Leftrightarrow-4x-6=0\)
\(\Leftrightarrow-4x=6\)
hay \(x=-\dfrac{3}{2}\)
Thay \(x=-\dfrac{3}{2}\) vào hàm số y=-x-4, ta được:
\(y=-\left(-\dfrac{3}{2}\right)-4=\dfrac{3}{2}-4=\dfrac{3}{2}-\dfrac{8}{2}=-\dfrac{5}{2}\)
Vậy: \(A\left(-\dfrac{3}{2};-\dfrac{5}{2}\right)\)
c) Vì (D2) song song với (D) nên a=-1
hay (D2): y=-x+b
Vì (D2) đi qua điểm B(-2;5)
nên Thay x=-2 và y=5 vào hàm số y=-x+b, ta được:
-(-2)+b=5
hay b=5-2=3
Vậy: (D2): y=-x+3
b) Vì A(xA;yA) là giao điểm của (D) và (D1) nên Hoành độ của A là nghiệm của phương trình hoành độ giao điểm có hai vế là hai hàm số của (D) và (D1)
hay \(-x-4=3x+2\)
\(\Leftrightarrow-x-4-3x-2=0\)
\(\Leftrightarrow-4x-6=0\)
\(\Leftrightarrow-4x=6\)
hay \(x=-\dfrac{3}{2}\)
Thay \(x=-\dfrac{3}{2}\) vào hàm số y=-x-4, ta được:
\(y=-\left(-\dfrac{3}{2}\right)-4=\dfrac{3}{2}-4=\dfrac{3}{2}-\dfrac{8}{2}=-\dfrac{5}{2}\)
Vậy: \(A\left(-\dfrac{3}{2};-\dfrac{5}{2}\right)\)
c) Vì (D2) song song với (D) nên a=-1
hay (D2): y=-x+b
Vì (D2) đi qua điểm B(-2;5)
nên Thay x=-2 và y=5 vào hàm số y=-x+b, ta được:
-(-2)+b=5
hay b=5-2=3
Vậy: (D2): y=-x+3
Đường thẳng đi qua A( 1;-2) và song song với đường thẳng d: 3x-y+1=0
A. x-3y+1 B. 3x-y-5=0
C. 3x-y+3=0 D. x+3y+5=0
Song song với d nên có a = 3
=> Ý B hoặc C
Thay x = 1; y = -2 vào câu B thấy thỏa mãn
Vậy Chọn B
Bài 1: Cho (d) y= (m + 3)x + y. Tìm m và n để:
a) (d) đi qua A (1;-3) và V (-2;3)
b) (d) cắt Oy tại điểm có tung đô 1 - √3
c) (d) cắt đường thẳng 3y - x - 4 = 0
d) (d) // đường thẳng 2x + 5y = -1
e) (d) \(\equiv\) với đường thẳng y - 3x - 7 = 0
Bài 2: Cho y = f (x) = ( 5 - 3a)x + a + 6
a) Cho f (-2) = 10. Tính f (2)
b) Cho f (3) = 5, học sinh đã cho đồng biến hay nghịch biến.