Cho hai phương trình : x ( x - 1 ) ( I ) v à 3 x - 3 = 0 ( I I )
A. (I) tương đương (II)
B. (I) là hệ quả của phương trình (II)
C. (II) là hệ quả của phương trình (I)
D. Cả ba đều sai
Câu 2 :
2) Giải phương trình : \(\left(x-1\right)^3+x^3+\left(x+1\right)^3=\left(x+2\right)^3\)
Câu 4 :
1) Cho hình bình hành ABCD, điểm F trên cạnh BC . Tia À cắt BD và DC lần lượt tại E và G . Chứng minh rằng :
a) Hai tam giác : BEF ; DEA đồng dạng và \(AE^2=EF.EG\)
b) \(\dfrac{1}{AF}+\dfrac{1}{AG}=\dfrac{1}{AE}\)
2) Cho hai tam giác đều ABC và DEF có điểm A nằm trên cạnh DF , điểm E nằm trên cạnh BC ( F và C cùng thuộc một nửa mặt phẳng bờ AE ) . AC cắt EF tại I . Chứng minh rằng : hai tam giác : IFC ; IAE đồng dạng và \(BD//CF\).
Câu 5 :
Tìm giá trị nhỏ nhất của biểu thức \(P=a+b+c\) . Biết rằng a,b,c là các số thực thoả mãn điều kiện \(3\le a,b,c\le5\) và \(a^2+b^2+c^2=50\).
Giúp tôi với nha . Tôi cảm ơn trước.
Câu 2: pt đã cho \(\Leftrightarrow x^3-3x^2+3x-1+x^3+x^3+3x^2+3x+1=x^3+6x^2+12x+8\)
\(\Leftrightarrow2x^3-6x^2-6x-8=0\)
\(\Leftrightarrow x^2-3x^2-3x-4=0\)
\(\Leftrightarrow\left(x-1\right)^3-6\left(x-1\right)-9=0\) (*)
Đặt \(x-1=t\) thì (*) trở thành \(t^3-6t-9=0\)
\(\Leftrightarrow t^3-9t+3t-9=0\)
\(\Leftrightarrow t\left(t^2-9\right)+3\left(t-3\right)=0\)
\(\Leftrightarrow\left(t-3\right)\left(t^2+3t\right)+3\left(t-3\right)=0\)
\(\Leftrightarrow\left(t-3\right)\left(t^3+3t+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=3\\t^2+3t+3=0\left(loại\right)\end{matrix}\right.\)
\(\Leftrightarrow x-1=3\)
\(\Leftrightarrow x=4\)
Vậy pt đã cho có nghiệm \(x=4\)
bài đấy thì em làm được rồi á. Chỉ là em đăng lên xem còn cách nào giải hay hơn thôi ạ...
cho phương trình x2-4x-m2=0
gọi x1và x2 là 2 nghiệm của phương trình hãy tìm giá trị nhỏ nhất của biểu thức A= Ix12- x22I
Cho hai phương trình: x2-5x+6=0 (1)
x+(x-2)(2x+1)=2 (2)
a) Chứng minh hai phương trình có nghiệm chung là x=2
b) Chứng minh: x=3 là nghiệm của (1) nhưng không là nghiệm của (2).
c) Hai phương trình đã cho có tương đương với nhau không, vì sao?
a:
Thay x=2 vào (1), ta được:
\(2^2-5\cdot2+6=0\)(đúng)
Thay x=2 vào (2), ta được:
\(2+\left(2-2\right)\cdot\left(2\cdot2+1\right)=2\)(đúng)
b: (1)=>(x-2)(x-3)=0
=>S1={2;3}
(2)=>\(x+2x^2+x-4x-2-2=0\)
\(\Leftrightarrow x^2+x-2=0\)
=>(x+2)(x-1)=0
=>S2={-2;1}
vậy: x=3 là nghiệm của (1) nhưng không là nghiệm của (2)
Thứ hai cho phương trình x² - 2 (m - 1) x -3-m=0(ẩn x)(1) a) Chứng minh rằng phương trình có nghiệm x1,x² với mọi m b) Tìm m để phương trình có hai nghiệm trái dấu c) Tìm m để phương trình có hai nghiệm cùng âm d) Tìm m sao cho x1 x2 của phương trình thỏa mãn x1^2 + x2^2 lớn hơn hoặc bằng 0 e) tìm hệ thức liên hệ giữa x1 và x2 không phụ thuộc m f) hãy biểu thị x1 qua x2
a:Δ=(2m-2)^2-4(-m-3)
=4m^2-8m+4+4m+12
=4m^2-4m+16
=(2m-1)^2+15>=15>0
=>Phương trình luôn có hai nghiệm phân biệt
b: Để phương trình có hai nghiệm trái dấu thì -m-3<0
=>m+3>0
=>m>-3
c: Để phương trình có hai nghiệm âm thì:
2m-2<0 và -m-3>0
=>m<1 và m<-3
=>m<-3
d: x1^2+x2^2=(x1+x2)^2-2x1x2
=(2m-2)^2-2(-m-3)
=4m^2-8m+4+2m+6
=4m^2-6m+10
=4(m^2-3/2m+5/2)
=4(m^2-2*m*3/4+9/16+31/16)
=4(m-3/4)^2+31/4>0 với mọi m
3/ Cho phương trình x ^ 2 - 2(m - 3) * x + m ^ 2 + 3 = 0 phương trình có hai nghiệm phân biệt x 1 ,x 2 thỏa mãn x 1 ^ 2 +x 2 ^ 2 =86
\(\Delta'=\left(m-3\right)^2-\left(m^2+3\right)=-6m+6>0\Rightarrow m< 1\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-3\right)\\x_1x_2=m^2+3\end{matrix}\right.\)
\(x_1^2+x_2^2=86\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=86\)
\(\Leftrightarrow4\left(m-3\right)^2-2\left(m^2+3\right)=86\)
\(\Leftrightarrow m^2-12m-28=0\Rightarrow\left[{}\begin{matrix}m=14\left(loại\right)\\m=-2\end{matrix}\right.\)
Ta có : \(\Delta=\left(2m+6\right)^2-4\left(m^2+3\right)=4m^2+24m+36-4m^2-12=24m+24\)
Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)
\(24m+24>0\Leftrightarrow24m>-24\Leftrightarrow m>-1\)
Theo hệ thức Viet :\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m+6\\x_1x_2=\dfrac{c}{a}=m^2+3\end{matrix}\right.\)
mà \(\left(x_1+x_2\right)^2=\left(2m+6\right)^2\Leftrightarrow x_1^2+x_2^2=4m^2+24m+36-2x_1x_2\)
\(\Leftrightarrow x_1^2+x_2^2=4m^2+24m+36-2m^2-6=2m^2+24m+30\)
Lại có : \(x_1^2+x_2^2=86\)hay \(2m^2+24m+30=86\Leftrightarrow2\left(m^2+12m-28\right)=0\)
\(\Leftrightarrow2\left(m-2\right)\left(m+14\right)=0\Leftrightarrow\left[{}\begin{matrix}m=2\left(chon\right)\\m=-14\left(loại\right)\end{matrix}\right.\)
Để phương trình có hai nghiệm phân biệt thì Δ > 0
=> [ -(m-3) ]2 - (m2 + 3) > 0
<=> m2 - 6m + 9 - m2 - 3 > 0
<=> -6m + 6 > 0
<=> m < 1
Vậy với m < 1 thì phương trình có hai nghiệm phân biệt
Theo hệ thức Viète ta có : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m-6\\x_1x_2=\dfrac{c}{a}=m^2+3\end{matrix}\right.\)
Khi đó x12 + x22 = 86
<=> ( x1 + x2 )2 - 2x1x2 - 86 = 0
<=> ( 2m - 6 )2 - 2( m2 + 3 ) - 86 = 0
<=> 4m2 - 24m + 36 - 2m2 - 6 - 86 = 0
<=> 2m2 - 24m - 56 = 0
<=> m2 - 12m - 28 = 0
Δ' = b'2 - ac = 36 + 28 = 64
Δ' > 0, áp dụng công thức nghiệm thu được m1 = 14 (ktm) ; m2 = -2 (tm)
Vậy với m = -2 thì thỏa mãn đề bài
Cho các khẳng định sau:
(1) Phương trình |x – 3| = 1 chỉ có một nghiệm là x = 2
(2) Phương trình |x – 1| = 0 có 2 nghiệm phân biệt
(3) Phương trình |x – 3| = 1 có hai nghiệm phân biệt là x = 2 và x = 4
Số khẳng định đúng là:
A. 0
B. 1
C. 2
D. 3
Xét phương trình |x – 3| = 1
TH1: |x – 3| = x – 3 khi x – 3 ≥ 0 ó x ≥ 3
Phương trình đã cho trở thành x – 3 = 1 ó x = 4 (TM)
TH2: |x – 3| = 3 – x khi x – 3 < 0 ó x < 3
Phương trình đã cho trở thanh 3 – x = 1 ó x = 2 (TM)
Vậy phương trình |x – 3| = 1 có hai nghiệm x = 2 và x = 4 hay (1) sai và (3) đúng
|x – 1| = 0 ó x – 1 = 0 ó x = 1 nên phương trình |x – 1| = 0 có nghiệm duy nhất hay (2) sai.
Vậy có 1 khẳng định đúng
Đáp án cần chọn là: B
Cho phương trình: xᒾ + 2(m − 1)x+mᒾ - 3 = 0 (1) (m là tham số) a) Giải phương trình (1) với m=2 b) Tìm m để phương trình (1) có hai nghiệm X₁; x₂ thỏa mãn x₁ + x₂ =52
a: Khi m=2 thì (1) sẽ là x^2+2x+1=0
=>x=-1
b:x1+x2=52
=>2m-2=52
=>2m=54
=>m=27
Cho phương trình x² – 2(3-m)x-4-m² =0 (x là ẩn, m là tham số) (1). a. Giải phương trình (1) với m = 1. b. Tìm m để phương trình (1) có hai nghiệm phân biệt X₁ , X ₂ thỏa mãn ||x₁ | — |x₂ || =0.
a: Khi m=1 thì (1) sẽ là:
x^2-4x-5=0
=>x=5 hoặc x=-1
a)Cho phương trình : (m+2)x^2 - (2m-1)x-3+m=0 tìm điều kiện của m để phương trình có hai nghiệm phân biệt x1, x2 sao cho nghiệm này gấp đôi nghiệm kia
b)Cho phương trình bậc hai: x^2-mx+m-1=0. Tìm m để phương trình có hai nghiệm x1;x2 sao cho biểu thức R=2x1x2+3/x1^2+x2^2+2(1+x1x2) đạt giá trị lớn nhất. Tìm giá trị lớn nhất đó
c)Định m để hiệu hai nghiệm của phương trình sau đây bằng 2
mx^2-(m+3)x+2m+1=0
Mọi người giúp em giải chi tiết ra với ạ. Em cảm ơn!