Nếu \(\sqrt{a+32}-\sqrt{a-32}=4\) thì \(\sqrt{a+32}+\sqrt{a-32}\)=
nếu\(\sqrt{a+32}-\sqrt{a-32}\) = 4 thì \(\sqrt{a+32}+\sqrt{a-32}\) = ?
mk ăn theo bao giờ bài này dễ thật mà trên violympic đầy
BÀI NÀY DỄ MÀ NHÂN LIÊN HỢP LÀ RA KQ: 16
Rút gọn biểu thức.
a) \(\sqrt{13+4\sqrt{10}}+\sqrt{13-4\sqrt{10}}\)
b) \(\sqrt{17-3\sqrt{32}}+\sqrt{17-3\sqrt{32}}\)
a: \(=\sqrt{8+2\cdot2\sqrt{2}\cdot\sqrt{5}+5}+\sqrt{8-2\cdot2\sqrt{2}\cdot\sqrt{5}+5}\)
\(=\sqrt{\left(2\sqrt{2}+\sqrt{5}\right)^2}+\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}\)
\(=2\sqrt{2}+\sqrt{5}+2\sqrt{2}-\sqrt{5}=4\sqrt{2}\)
b: \(=2\cdot\sqrt{17-3\sqrt{32}}\)
\(=2\cdot\sqrt{9-2\cdot3\cdot2\sqrt{2}+8}\)
\(=2\left(3-2\sqrt{2}\right)=6-4\sqrt{2}\)
a) \(\dfrac{5-2\sqrt{ }5}{\sqrt{ }5-2}-\dfrac{11}{4+\sqrt{ }5} \)
b)\(\sqrt{9+4\sqrt{ }5-\sqrt{ }6-2\sqrt{ }5}\)
c)\(\sqrt{17-3\sqrt{ }32+\sqrt{ }17+\sqrt{ }32}\)
\(\dfrac{\sqrt{5}\left(\sqrt{5}-2\right)}{\sqrt{5}-2}-\dfrac{11\left(4-\sqrt{5}\right)}{16-5}=\sqrt{5}-4+\sqrt{5}=2\sqrt{5}-4\)
\(=\sqrt{5}-4+\sqrt{5}=2\sqrt{5}-4\)
A=\(\sqrt{12-\sqrt{80-32\sqrt{3}}}-\sqrt{12+\sqrt{80-32\sqrt{3}}}\) tính giá trị biểu thức
\(A^2=12-\sqrt{80-32\sqrt{3}}+12+\sqrt{80-32\sqrt{3}}-2\sqrt{144-80+32\sqrt{3}}\)
=>\(A^2=24-2\sqrt{48+32\sqrt{3}}\)
=>A^2=24-8căn 3+2căn 3
=>\(A=\sqrt{24-8\sqrt{3+2\sqrt{3}}}\)
A = \(10-\left(\sqrt{32}-\sqrt{8}-\sqrt{27}\right)\left(\sqrt{8}-\sqrt{32}-\sqrt{27}\right)\)
\(A=10-\left(\sqrt{32}-\sqrt{8}-\sqrt{27}\right)\left(\sqrt{8}-\sqrt{32}-\sqrt{27}\right)\)
\(A=10-\left[-\sqrt{27}+\left(\sqrt{32}-\sqrt{8}\right)\right]\left[-\sqrt{27}-\left(\sqrt{32}-\sqrt{8}\right)\right]\)
\(A=10-\left[\left(-\sqrt{27}\right)^2-\left(\sqrt{32}-\sqrt{8}\right)^2\right]\)
\(A=10-\left(27-8\right)\)
\(A=-9\)
Tính:
\(A=\sqrt{20}-10\sqrt{\dfrac{1}{5}}+\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(B=2\sqrt{32}+5\sqrt{8}-4\sqrt{32}\)
\(C=\sqrt{\left(3-\sqrt{2}^2\right)}-\sqrt{\left(1-\sqrt{2}\right)^2}\)
\(D=\sqrt{\left(5-1\right)^2}+\sqrt{\left(\sqrt{5}-3\right)^2}\)
\(E=\left(3+\dfrac{5-\sqrt{5}}{\sqrt{5}-1}\right)\left(3-\dfrac{5+\sqrt{5}}{\sqrt{5}-1}\right)\)
\(F=\sqrt{6+2\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
\(G=\dfrac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}+\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}\)
\(H=\dfrac{10}{\sqrt{3}-1}-\dfrac{55}{2\sqrt{3}+1}\)
help
a) Ta có: \(A=\sqrt{20}-10\sqrt{\dfrac{1}{5}}+\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=2\sqrt{5}-2\sqrt{5}+\sqrt{5}-1\)
\(=\sqrt{5}-1\)
b) Ta có: \(B=2\sqrt{32}+5\sqrt{8}-4\sqrt{32}\)
\(=8\sqrt{2}+10\sqrt{2}-16\sqrt{2}\)
\(=2\sqrt{2}\)
a,(\(\left(\sqrt{50}-\sqrt{32}+\sqrt{8}\right):\sqrt{2}\) b,\(\dfrac{4}{\sqrt{5}-1}-5\sqrt{\dfrac{1}{5}}\)
a: \(\dfrac{\sqrt{50}-\sqrt{32}+\sqrt{8}}{\sqrt{2}}\)
\(=\dfrac{5\sqrt{2}-4\sqrt{2}+2\sqrt{2}}{\sqrt{2}}\)
\(=\dfrac{3\sqrt{2}}{\sqrt{2}}=3\)
b: \(\dfrac{4}{\sqrt{5}-1}-5\sqrt{\dfrac{1}{5}}\)
\(=\dfrac{4\left(\sqrt{5}+1\right)}{5-1}-\sqrt{5}\)
\(=\sqrt{5}+1-\sqrt{5}\)
=1
\(\)Bài 1: Rút gọn các biểu thức sau
a) A= \(3\sqrt{3}+4\sqrt{12}-5\sqrt{27}\)
b) B= \(\sqrt{32}-\sqrt{50}+\sqrt{18}\)
c) C= \(\sqrt{72}+\sqrt{4\frac{1}{2}}-\sqrt{32}-\sqrt{162}\)
a, A = \(3\sqrt{3}+4\sqrt{12}-5\sqrt{27}\)
= \(3\sqrt{3}+8\sqrt{3}-15\sqrt{3}\)
= \(-4\sqrt{3}\)
b, B = \(\sqrt{32}-\sqrt{50}+\sqrt{18}\)
= \(4\sqrt{2}-5\sqrt{2}+3\sqrt{2}\)
= \(2\sqrt{2}\)
Cho x,y,z>0 thỏa mãn \(\sqrt{x}+\sqrt{y}+\sqrt{z}=1\)\(1\).Tìm GTNN của:
\(A=\sqrt{\frac{x^2}{5x+32\sqrt{xy}+12y}}+\sqrt{\frac{y^2}{5y+32\sqrt{yz}+12z}}+\sqrt{\frac{z^2}{5z+32\sqrt{zx}+12x}}\)