Chứng minh biểu thức sau không phụ thuộc vào biến x, y.
P = x 2 - y 2 ( x + y ) ( a y - a x ) (với a là hằng số)
cho x^2+y^2=1.chứng minh rằng biểu thức sau không phụ thuộc vào biến x,y:2(x^6+y^6)-3(x^4+y^4)
Ta có \(x^4+y^4=\left(x^2\right)^2+\left(y^2\right)^2=\left(x^2+y^2\right)^2-2x^2y^2\)
\(=1-2x^2y^2\)
Tương tự \(x^6+y^6=\left(x^2\right)^3+\left(y^2\right)^3=\left(x^2+y^2\right)\left(x^2+y^2-x^2y^2\right)=1-x^2y^2\)
Thế vào ta được
\(2\left(1-x^2y^2\right)-3\left(1-2x^2y^2\right)=2-2x^2y^2-3+6x^2y^2=4x^2y^2-1=\left(2xy\right)^2-1\)
Vậy là nó có phụ thuộc vào biến x,y mà bạn ? đề có sai không
Dũng Lê Trí ơi bạn viết sai rồi \(\left(x^2\right)^3+\left(y^2\right)^3\)phải bằng\(\left(x^2+y^2\right)\left(x^4+y^4-x^2y^2\right)\)
chứng minh biểu thức sau không phụ thuộc vào biến x
x(3x^2-x+5)(2x^3+3x+16)(x^2-x+2)(y-5)(y+8)(y+4)(y-1)
v` đề ảo quá bạn mk tính mãi ko ra chắc chết ms ra
chứng minh biểu thức sau không phụ thuộc vào biến x,y
3xy(4x-2y)-(x-2y)^3-2(4y^3-1)
`3xy(4x-2y)-(x-2y)^3-2(4y^3-1)`
`=12x^2y-6xy^2-(x^3-6x^2y+12xy^2-8y^3)-8y^3+2`
`=12x^2y-6xy^2-x^3+6x^2y-12xy^2+8y^3-8y^3+2`
`=-x^3+18x^2y-18xy^2+2` (??????)
chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào biến y : (x-2y)(x^2 +2xy+4y^2) +8y^3
Ta có :
(x - 2y)(x2 + 2xy + 4y2) + 8y3
= x3 - 8y3 + 8y3
= x3
\(\Rightarrow\) đpcm
chứng minh rằng : giá trị của biểu thức sau không phụ thuộc vào các biến
(x+y - z - t)^2 - (z +t - x -y)^2
Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào biến y :
(x-2y)(x^2+2xy+4y^2)+8y^3
(x-2y)(x2+2xy+4y2)+8y3
=x3-(2y)3+(2y)3
=x3
=>Giá trị của biểu thức không phụ giá trị của biến y
\(\left(x-2y\right)\left(x^2+2xy+4y^2\right)+8y^3\)
\(=x^3-8y^3+8y^3=x^3\)
Vậy giá trị biểu thức không phụ thuộc biến y
a/chứng minh rằng biểu thức sau không âm với mọi giá trị của biến
A=(-15.x^3.y^6):(-5xy^2)
b/chứng minh rằng giá trị biểu thức sau ko phụ thuộc vào giá trị của biến y(x,y khác 0)
B=2/3 x^2 y^3:(-1/3xy)+2x(y-1)(y+1)
chứng minh giá trị biểu thức không phụ thuộc vào biến xy : (x+y)(x^2-xy+y^2)+(x-y)(x^2+xy+y^2)-2x^3
\(\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x-y\right)\left(x^2+xy+y^2\right)-2x^3\)
\(=x^3+y^3+x^3-y^3-2x^3\)( hằng đẳng thức số 6+7 )
\(=\left(x^3+x^3\right)+\left(y^3-y^3\right)-2x^3\)
\(=2x^3-2x^3+0=0+0=0\)
vậy giá trị của biểu thức không phụ thuộc vào biến x, y.
Chứng minh biểu thức không phụ thuộc vào biến
(x-y-1)^3 - (x-y+1)^3+6(x-y)^2
Bạn khai triển hằng đẳng thức (x-y-1)^3-(x-y+1)^3 với dạng A^3-B^3 rồi rút từ từ là ra thôi
Cho biểu thức B=-x(x-y)-y(x+y)+(x+y)(x-y)+2y^(2).Chứng minh rằng giá trị của biểu thức B không phụ thuộc vào giá trị của biến.
B=-x(x-y)-y(x+y)+(x+y)(x-y)+2y^(2)
B=-x^2+xy-yx-y^2+x^2-xy+xy-y^2+2y^2
B=0
vậu B ko phọ thuộc vào gt của biến
\(B=-x\left(x-y\right)-y\left(x+y\right)+\left(x+y\right)\left(x-y\right)+2y^2\)
\(=-x^2+xy-xy-y^2+x^2-y^2+2y^2\)
=0