Với những giá trị nào của k thì hàm số bậc nhất y = (5 – k)x + 1 nghịch biến?
a) Với những giá trị nào của m thì hàm số bậc nhất y = (m – 1)x + 3 đồng biến?
b) Với những giá trị nào của k thì hàm số bậc nhất y = (5 – k)x + 1 nghịch biến?
a) Hàm số y = (m – 1)x + 3 là hàm số bậc nhất đối với x khi m – 1 ≠ 0 hay m ≠ 1 (*)
Hàm số đồng biến khi m – 1 > 0 hay m > 1.
Kết hợp với điều kiện (*) ta được với m > 1 thì hàm số đồng biến.
b) Hàm số y = (5 – k)x + 1 là hàm số bậc nhất đối với x khi 5 – k ≠ 0 hay k ≠ 5 (**).
Hàm số nghịch biến khi 5 – k < 0 hay k > 5.
Kết hợp với điều kiện (**) ta được với k > 5 thì hàm số nghịch biến.
I.TỰ LUẬN
BÀI 1: a) Với giá trị nào của m thì hàm số y = (2m-1)x +5 là hàm số bậc nhất?
b) Với những giá trị nào của m thì hàm số bậc nhất y = (m – 1)x + 3 đồng biến?
c) Với những giá trị nào của k thì hàm số bậc nhất y = (5 – k)x + 1 nghịch biến?
a) Với những giá trị nào của m thì hàm số bậc nhất y = (m – 1)x + 3 đồng biến?
b) Với những giá trị nào của k thì hàm số bậc nhất y = (5 – k)x + 1 nghịch biến?
a) Hàm số y = (m – 1)x + 3 là hàm số bậc nhất đối với x khi m – 1 ≠ 0 hay m ≠ 1 (*)
Hàm số đồng biến khi m – 1 > 0 hay m > 1.
Kết hợp với điều kiện (*) ta được với m > 1 thì hàm số đồng biến.
b) Hàm số y = (5 – k)x + 1 là hàm số bậc nhất đối với x khi 5 – k ≠ 0 hay k ≠ 5 (**).
Hàm số nghịch biến khi 5 – k < 0 hay k < 5.
Kết hợp với điều kiện (**) ta được với k < 5 thì hàm số nghịch biến.
a, y= 5x - (2-x)k = 5x - 2k + k.x = (5+k)x - 2k
Vậy hàm số có hệ số a= 5+k. Khi đó:
+ Hàm số đồng biến a > 0 ⇔ 5 + k > 0 ⇔ k > -5
+ Hàm số nghịch biến a < 0 ⇔ 5 + k < 0 ⇔ k < -5.
a) Với những giá trị nào của m thì hàm số bậc nhất y = (m – 1)x + 3 đồng biến?
b) Với những giá trị nào của k thì hàm số bậc nhất y = (5 – k)x + 1 nghịch biến?
a,khi m-1>=0 thi ham so dong bien tuc m>=1
b,khi 5-k<=0 thi ham so nghich bien tuc k>=5
a) Khi m - 1 \(\ge\)0 thì hàm số đồng biến tức m \(\ge\)1
b) Khi 5 - k \(\le\)0 thì hàm số nghịch biến tức k \(\ge\)5
a) Hàm số y = ( m – 1 ) x + 3 là hàm số bậc nhất đối với x khi \(m-1\ne0\) hay \(m\ne1\) (*)
Hàm số đồng biến khi m – 1 > 0 hay m > 1.
Kết hợp với điều kiện (*) ta được với m > 1 thì hàm số đồng biến.
b) Hàm số y = ( 5 – k ) x + 1 là hàm số bậc nhất đối với x khi \(5-k\ne0\) hay \(k\ne5\) (**)
Hàm số nghịch biến khi 5 – k < 0 hay k > 5.
Kết hợp với điều kiện (**) ta được với k > 5 thì hàm số nghịch biến /
a) Với những giá trị nào của m thì hàm số bậc nhất \(y=\left(m-1\right)x+3\) đồng biến ?
b) Với những giá trj nào của k thì hàm số bậc nhất \(y=\left(5-k\right)x+1\) nghịch biến ?
Lời giải:
a) Hàm số y = (m – 1)x + 3 là hàm số bậc nhất đối với x khi m – 1 ≠ 0 hay m ≠ 1, do đó hàm số đồng biến khi hệ số của x dương. Vậy m – 1 > 0 hay m > 1 thì hàm số đồng biến.
b) Hàm số y = (5 – k)x + 1 là hàm số bậc nhất đối với x khi 5 – k ≠ 0 hay k ≠ 5, do đó hàm số nghịch biến khi hệ số của x âm.
Vậy 5 – k < 0 hay 5 < k thì hàm số nghịch biến.
a) Hàm số bậc nhất y = (m – 1)x +3 đồng biến
⇔ m -1 > 0
⇔ m > 1
Vậy: Với m > 1 thì hàm số đồng biến
b)
Hàm số bậc nhất y = (5 – k)x+1 nghịch biến
⇔ 5 – k < 0
⇔ k > 5
Vậy: Với k > 5 thì hàm số nghịch biến
a) với những giá trị nào của m thì hàm số y = (m + 6)x - 7 đồng biến?
b) với những giá trị nào của k thì hàm số y = (-k + 9)x + 100 nghịch biến?
c) với những giá trị nào của m thì đồ thị của hàm số y = 12x + (5 + m) và y = -3x + (3 - m) cắt nhau tại một điểm trên trục tung
a: Để hàm số y=(m+6)x-7 đồng biến thì m+6>0
=>m>-6
b: Để hàm số y=(-k+9)x+100 nghịch biến thì -k+9<0
=>-k<-9
=>k>9
c: Để hai đồ thị hàm số y=12x+(5+m) và y=-3x+(3-m) cắt nhau tại một điểm trên trục tung thì
\(\left\{{}\begin{matrix}m+5=3-m\\12\ne-3\left(đúng\right)\end{matrix}\right.\)
=>m+5=3-m
=>2m=-2
=>m=-1
Với những giá trị nào của m thì hàm số bậc nhất \(y=\left(5-m\right)x+1\) nghịch biến
Để hàm số y=(5-m)x+1 nghịch biến thì 5-m<0
=>-m<-5
=>m>5
Để hàm số trên là hàm số nghịch biến thì
\(5-m< 0\\ \Leftrightarrow m>5\)
Bài 1: Cho hàm số\(y=x\sqrt{m-1}-\dfrac{3}{2}\).Tìm giá trị của m sao cho hàm số trên là hàm số bậc nhất
Bài 2: Với giá trị nào của k thì:
a)Hàm số \(y=\left(k^2-5k-6\right)x-13\) đồng biến?
b)Hàm số \(y=\left(2k^2+3k-2\right)x+3\) nghịch biến?
Bài 3: Cho hai hàm số bậc nhất y = 2x + k và y = (2m + 1)x + 2k - 3. Tìm điều kiện đối với m và k để hai đồ thị hàm số là:
a)Hai đường thẳng cắt nhau
b)Hai đường thẳng song song với nhau
c)Hai đường thẳng trùng nhau
Bài 4: Cho đường thẳng (d): y = (m - 3)x + 1 - m. Xác định m trong các trường hợp sau đây:
a) (d) cắt trục Ox tại điểm A có hoành độ x = 2
b) (d) cắt trục tung Ox tại điểm B có tung độ y = -3
c) (d) đi qua điểm C(-1 ; 4)
a, Với giá trị nào của a thì hàm số y = (a + b) x + 5 đồng biến
b, Với giá trị nào của k thì hàm số : y = (1 - \(k^2\)) x - 1 nghịch biến
b)
Để hàm số \(y=\left(1-k^2\right)x-1\) là hàm số bậc nhất thì \(1-k^2\ne0\)
\(\Leftrightarrow k^2\ne1\)
hay \(k\notin\left\{1;-1\right\}\)
Để hàm số \(y=\left(1-k^2\right)x-1\) nghịch biến trên R thì \(1-k^2< 0\)
\(\Leftrightarrow k^2>1\)
\(\Leftrightarrow\left[{}\begin{matrix}k>1\\k< 1\end{matrix}\right.\)
Kết hợp ĐKXĐ, ta được: \(\left[{}\begin{matrix}k>1\\k< 1\end{matrix}\right.\)
Vậy: Khi \(\left[{}\begin{matrix}k>1\\k< 1\end{matrix}\right.\) thì hàm số \(\left[{}\begin{matrix}k>1\\k< 1\end{matrix}\right.\) nghịch biến trên R