Với hai điểm A, B phân biệt ta có được bao nhiêu vectơ có điểm đầu và điểm cuối là A hoặc B.
cho ba điểm A,B,C phân biệt có tất cả bao nhiêu vectơ (khác vecto không có điểm đầu,điểm cuối là hai điểm cuối là hai điểm trong ba điểm A,B,C ?
A:3
B:8
C:10
D:6
Trên mặt phẳng cho 6 điểm phân biệt A, B, C, D, E; F. Hỏi có bao nhiêu vectơ khác vectơ – không, mà có điểm đầu và điểm cuối là các điểm đã cho ?
A. 100.
B. 120.
C. 30.
D. 25.
Xét tập X = {A, B, C, D, E ; F}. Với mỗi cách chọn hai phần tử của tập X và sắp xếp theo một thứ tự ta được một vectơ thỏa mãn yêu cầu
Mỗi vectơ thỏa mãn yêu cầu tương ứng cho ta một chỉnh hợp chập 2 của 6 phần tử thuộc tập X.
Vậy số các vectơ thỏa mãn yêu cầu bằng số tất cả các chỉnh hợp chập 2 của 6, bằng
Chọn C.
Trong 2019 điểm phân biệt cho trước, có bao nhiêu vectơ khác 0 → với điểm đầu và điểm cuối là 2 trong 2019 điểm đã cho?
A. C 2019 2
B. 2019 2
C. A 2019 2017
D. A 2019 2
Chọn đáp án D.
Mỗi cách lấy có thứ tự hai điểm trong 2019 điểm đã cho ta xác định được một vectơ. Vì vậy, từ 2019 điểm phân biệt, ta xác định được A 2019 2 vecto khác 0 →
Câu 5: Cho tam giác ABC. Có thể xác định được bao nhiêu (khác vectơ - không) có điểm đầu và điểm cuối là các đỉnh A, B, C?
A. 2. B. 3. C. 4. D. 6.
Câu 6: Khẳng định nào sau đây đúng?
A. Hai vectơ cùng phương với một vectơ thứ ba thì cùng phương.
B. Hai vectơ cùng phương với một vectơ thứ ba khác 0 thì cùng phương.
C. Vectơ - không là vectơ không có giá.
D. Hai vectơ cùng hướng là hai vectơ có giá song song hoặc trùng nhau. Câu 7: Cho ba điểm M, N, P thẳng hàng; P nằm giữa M và N. Cặp vectơ nào sau đây ngược hướng với nhau?
A. MN NP , . B. MN MP , . C. MP PN , . D. NM NP , .
Câu 5:
D. Các vector \(\overrightarrow{AB}, \overrightarrow{BA}, \overrightarrow{AC}, \overrightarrow{CA}, \overrightarrow{BC}, \overrightarrow{CB}\)
Cho 10 điểm phân biệt. Hỏi có thể tạo ra bao nhiêu vectơ có điểm đầu và điểm cuối không trùng nhau được lấy từ 10 điểm trên?
A.
B.
C. 20.
D.
Đáp án B.
Từ 2 điểm phân biệt có thể tạo được 2 vecto nên số vecto tạo ra được là
Cho 10 điểm phân biệt. Hỏi có thể tạo ra bao nhiêu vectơ có điểm đầu và điểm cuối không trùng nhau được lấy từ 10 điểm trên?
A. C 10 2 .
B. A 10 2 .
C. 20
D. 2 10
Đáp án B.
Từ 2 điểm phân biệt có thể tạo được 2 vecto nên số vecto tạo ra được là A 10 2 .
Trong mặt phẳng cho một tập hợp gồm 6 điểm phân biệt. Có bao nhiêu vectơ khác vectơ 0 → có điểm đầu và điểm cuối thuộc tập hợp điểm này?
A. 15
B. 12
C. 1440
D. 30
Mỗi cặp sắp thứ tự gồm hai điểm (A; B) cho ta một vectơ có điểm đầu A và điểm cuối B và ngược lại.
Như vậy, mỗi vectơ có thể xem là một chỉnh hợp chập 2 của tập hợp 6 điểm đã cho.
Suy ra có A 6 2 = 30 cách.
Chọn đáp án D.
Trong mặt phẳng cho 2018 điểm phân biệt sao cho ba điểm bất kì không thẳng hàng. Có bao nhiêu vectơ khác không có điểm đầu và điểm cuối thuộc 2018 điểm đã cho?
A. 4070360
B. 2035153
C. 4167114
D. 4070306
Đáp án D
Phương pháp:
Sử dụng quy tắc nhân.
Cách giải:
Số cách chọn điểm đầu là 2018 cách.
Số cách chọn điểm cuối là 2017 cách (trừ vector không).
Vậy có 2018 × 2017 = 4070306 cách