Chứng minh với mọi n ∈ N * , ta có: 13 n – 1 chia hết cho 6
Chứng minh rằng :
a/ với mọi n thuộc N ta có : ( n + 3 ).( n + 13 ).( n + 14 ) chia hết cho 6
b/ với mọi n thuộc N* ta có : A = 34n + 1 + 24n + 1 chia hết cho 5
c/ với mọi n thuộc N* ta có : 56n + 777...777 chia hết cho 63 ( 777...777 có n chữ số 7 )
Chứng minh rằng với mọi số tự nhiên n > 1 ta có
\(\frac{1}{n+1}+\frac{1}{n+2}+....+\frac{1}{2n}>\frac{13}{24}\)
a) Chứng minh rằng : 13n+1-13n chia hết cho 12 với mọi số tự nhiên n
b) Chứng minh rằng n3-n chia hết cho 6 với mọi giá trị nguyên n
a)
Ta có: 13n+1 - 13n
= 13n . 13 - 13n
= 13n (13 - 1)
= 13n . 12 \(⋮\) 12
Vậy: 13n+1 - 13n \(⋮\) 12 vs mọi số tự nhiên n
b)
Ta có: n3 - n = n (n2 - 1)
= (n - 1).n.(n+1) \(⋮\) 6 (vì tích 3 số tự nhiên liên tiếp luôn chia hết cho 6)
Chứng minh rằng với mọi n >1 ta có: (n!+1; (n+1)!+1) =1
Chứng minh với mọi số nguyên dương n ta có 1/n√n+1 +(n+1)√n = 1/√n +1/√n+1
\(\frac{1}{n\sqrt{n+1}}+\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)
\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Chứng minh rằng với mọi số nguyên dương n ≥ 4 ta có: 3\(^{n-1}\) > n(n+2)
- Với \(n=4\Rightarrow3^3>4.6\) (đúng)
- Giả sử BĐT đã cho đúng với \(n=k\ge4\) hay \(3^{k-1}>k\left(k+2\right)\)
- Ta cần chứng minh nó cũng đúng với \(n=k+1\) hay: \(3^k>\left(k+1\right)\left(k+3\right)\)
Thật vậy, do \(k\ge4\Rightarrow k-3>0\), ta có:
\(3^k=3.3^{k-1}>3k\left(k+2\right)=3k^2+6k=\left(k^2+4k+3\right)+\left(2k^2+2k-3\right)\)
\(=\left(k+1\right)\left(k+3\right)+2k^2+k+\left(k-3\right)>\left(k+1\right)\left(k+3\right)\) (đpcm)
Chứng minh với mọi số nguyên dương n, ta có (1 + 1/n)^n < 3
Chứng minh với mọi số nguyên dương n≥3 ta luôn có:
(n+1)(n+2)(n+3).....(2n) ⋮ \(2^n\)
Chứng minh rằng với mọi số nguyên dương n , ta luôn có:
1/n+1 + 1/n+2 +...+ 1/2*n < 3/4