a)
Ta có: 13n+1 - 13n
= 13n . 13 - 13n
= 13n (13 - 1)
= 13n . 12 \(⋮\) 12
Vậy: 13n+1 - 13n \(⋮\) 12 vs mọi số tự nhiên n
b)
Ta có: n3 - n = n (n2 - 1)
= (n - 1).n.(n+1) \(⋮\) 6 (vì tích 3 số tự nhiên liên tiếp luôn chia hết cho 6)
a)
Ta có: 13n+1 - 13n
= 13n . 13 - 13n
= 13n (13 - 1)
= 13n . 12 \(⋮\) 12
Vậy: 13n+1 - 13n \(⋮\) 12 vs mọi số tự nhiên n
b)
Ta có: n3 - n = n (n2 - 1)
= (n - 1).n.(n+1) \(⋮\) 6 (vì tích 3 số tự nhiên liên tiếp luôn chia hết cho 6)
Chứng minh rằng:
101n+1-101nchia hết cho 100 (với n\(\in\) N)
25n+1-25n chia hết cho 100 với mọi số tự nhiên n.
n2(n-1)-2n(n-1) chia hết cho 6 với mọi số nguyên n
chứng minh rằng n2(n+1)+2n(n+1) luôn chia hết cho 6 với mọi số nguyên n
1. Chứng minh rằng 55n+1 - 55n chia hết cho 54 ( với n là số tự nhiên )
2.CMR : n2 . ( n+1) + 2n . ( n+1) luôn chia hết cho 6 với mọi số nguyên n
a) x2+xy+x tại x = 77 và y=22
b) x(x-y)+y(y-x) tại x=53 và y=3
2) chứng minh rằng n2(n+1)+2n(n+1) luôn chia hết cho 6 với mọi số nguyên n
1. chứng minh: 55^n+1-55^n chia hết cho 54
2. chứng minh: 5^6-10^4 chia hết cho 54
3. chứng minh: n^2(n+1)+2n(n+1) luôn chia hết cho 6 với mọi số nguyên n
Bài 5: Chứng minh rằng với mọi số nguyên n thì:
a) n2.(n+1)+2n.(n+1) chia hết cho 6.
b) (2n-1)3-(2n-1) chia hết cho 8.
c) (n+2)2-(n-2)2 chia hết cho 8.
d) (n+7)2-(n-5)2 chia hết cho 24.
Chứng minh rằng :
\(n^2\left(n+1\right)+2n\left(n+1\right)\)
luôn chia hết cho 6 với mọi số nguyên n ?
n2 ( n + 1 ) + 2n ( n + 1 )
Chứng minh rằng đa thức trên luôn chia hết cho 6 với mọi số nguyên n.
chứng minh và giải thích giùm mình nhé!
Tìm x
A) x+1=(x+1)^2
B) x^3+x=0
Câu2 chứng minh rằng : n^2(n+1)+2n(n+1) luôn chia hết cho 6 với mọi số nguyên n