Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Truc Thanh
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 9 2021 lúc 21:23

Bằng \(\overrightarrow{AB}\) là \(\overrightarrow{DC}\)

Bằng \(\overrightarrow{OB}\) là \(\overrightarrow{DO}\)

Có độ dài bằng OB là \(\overrightarrow{OB};\overrightarrow{BO};\overrightarrow{OD};\overrightarrow{DO}\)

Ikino Yushinomi
12 tháng 9 2021 lúc 21:26

a) Bằng vectơ AB :
\(\overrightarrow{DC}\)
Bằng vectơ OB :
\(\overrightarrow{DO}\)
b)Có độ dài bằng OB :
\(\overrightarrow{OD}, \overrightarrow{DO}, \overrightarrow{BO}\)
 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 6 2018 lúc 5:26

Manh Duy
Xem chi tiết
Tiểu Z
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
25 tháng 9 2023 lúc 21:46

a) Ta có: \(\overrightarrow {CE}  = \overrightarrow {AN}  \Rightarrow CE//AN\) và \(CE = AN = ND = BM = MC\)

Suy ra \(\overrightarrow {MC}  = \overrightarrow {CE} \)

+) \(\overrightarrow {NC}  + \overrightarrow {MC}  = \overrightarrow {NC}  + \overrightarrow {CE}  = \overrightarrow {NE} \)

+) ABCD là hình bình hành nên \(\overrightarrow {CD}  = \overrightarrow {BA} \)

\(\overrightarrow {AM}  + \overrightarrow {CD}  = \overrightarrow {AM}  + \overrightarrow {BA}  = \overrightarrow {BM} \)

+) Ta có \(\overrightarrow {MC}  = \overrightarrow {AN}  \Rightarrow AMCN\) là hình bình hành nên \(\overrightarrow {NC}  = \overrightarrow {AM} \)

\(\overrightarrow {AD}  + \overrightarrow {NC}  = \overrightarrow {AD}  + \overrightarrow {AM}  = \overrightarrow {AE} \) (vì AMED là hình bình hành)

b) Ta có:

+) \(\overrightarrow {NC}  - \overrightarrow {MC}  = \overrightarrow {NC}  + \overrightarrow {CM}  = \overrightarrow {NM} \)

+) \(\overrightarrow {AC}  - \overrightarrow {BC}  = \overrightarrow {AC}  + \overrightarrow {CB}  = \overrightarrow {AB} \)

+) \(\overrightarrow {AB}  - \overrightarrow {ME}  = \overrightarrow {AB}  - \overrightarrow {AD}  = \overrightarrow {AB}  + \overrightarrow {DA}  = \overrightarrow {DB} \)

c) Ta có:

\(\overrightarrow {AM}  + \overrightarrow {AN}  = \overrightarrow {AM}  + \overrightarrow {MC}  = \overrightarrow {AC} \)

Áp dụng quy tắc hình bình hành vào hình bình hành ABCD ta có

\(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \)

Từ đó suy ra \(\overrightarrow {AM}  + \overrightarrow {AN}  = \overrightarrow {AB}  + \overrightarrow {AD} \) (đpcm)

Tuấn Phạm
Xem chi tiết

1: ABCD là hình bình hành

=>\(\overrightarrow{DA}+\overrightarrow{DC}=\overrightarrow{DB}\)

\(\overrightarrow{AB}+\overrightarrow{DA}=\overrightarrow{DA}+\overrightarrow{AB}=\overrightarrow{DB}\)

2: \(\overrightarrow{AC}-\overrightarrow{ED}+\overrightarrow{CD}+\overrightarrow{EC}-\overrightarrow{BC}\)

\(=\overrightarrow{AC}+\overrightarrow{CD}+\overrightarrow{DE}+\overrightarrow{EC}+\overrightarrow{CB}\)

\(=\overrightarrow{AD}+\overrightarrow{DE}+\overrightarrow{EC}+\overrightarrow{CB}\)

\(=\overrightarrow{AE}+\overrightarrow{EC}+\overrightarrow{CB}=\overrightarrow{AC}+\overrightarrow{CB}=\overrightarrow{AB}\)

3:

a: \(\overrightarrow{BA}+\overrightarrow{DA}+\overrightarrow{AC}\)

\(=-\overrightarrow{AB}-\overrightarrow{AD}+\overrightarrow{AB}+\overrightarrow{AD}=\overrightarrow{0}\)

\(\overrightarrow{AB}+\overrightarrow{CA}+\overrightarrow{BC}\)

\(=\overrightarrow{CA}+\overrightarrow{AB}+\overrightarrow{BC}\)

\(=\overrightarrow{CB}+\overrightarrow{BC}=\overrightarrow{0}\)

Gọi H là trung điểm của BC

Xét ΔABC có AH là đường trung tuyến

nên \(\overrightarrow{AB}+\overrightarrow{AC}=2\cdot\overrightarrow{AH}\)

b: ABCD là hình vuông

=>\(DB^2=DA^2+AB^2\)

=>\(DB^2=a^2+a^2=2a^2\)

=>\(DB=a\sqrt2\)

ABCD là hình vuông

=>\(\overrightarrow{DA}+\overrightarrow{DC}=\overrightarrow{DB}\)

=>\(\left|\overrightarrow{DA}+\overrightarrow{DC}\right|=DB=a\sqrt2\)

\(\overrightarrow{AB}-\overrightarrow{CB}=\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AC}\)

=>\(\left|\overrightarrow{AB}-\overrightarrow{CB}\right|=CA=a\sqrt2\)

Nguyễn Duy
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
19 tháng 5 2017 lúc 14:36

Vectơ

\(\overrightarrow{EH}=\overrightarrow{AD},\overrightarrow{FG}=\overrightarrow{AD}\Rightarrow\overrightarrow{EH}=\overrightarrow{FG}\)

=> Tứ giác FEHG là hình bình hành

=> \(\overrightarrow{GH}=\overrightarrow{FE}\) (1)

Ta có \(\overrightarrow{DC}=\overrightarrow{AB},\overrightarrow{AB}=\overrightarrow{FE}\)

=> \(\overrightarrow{DC}=\overrightarrow{FE}\) (2)

Từ (1) và (2) ta có \(\overrightarrow{GH}=\overrightarrow{DC}\)

Vậy tứ giác GHCD là hình bình hành.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 1 2017 lúc 11:35

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Ta có: Giải sách bài tập Toán 11 | Giải sbt Toán 11

Do đó: Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Hệ thức Giải sách bài tập Toán 11 | Giải sbt Toán 11

 biểu thị sự đồng phẳng của ba vectơ  B B ' → ,   C C ' → ,   D D ' →