Một hộp có 6 quả cầu xanh đánh số từ 1 đến 6, 5 quả cầu đỏ đánh số từ 1 đến 5, 4 quả cầu vàng đánh số từ 1 đến 4.
Có bao nhiêu cách lấy 3 quả cầu khác màu?
A. 160.
B. 150.
C. 144.
D. 120
Một hộp có 6 quả cầu xanh đánh số từ 1 đến 6, 5 quả cầu đỏ đánh số từ 1 đến 5, 4 quả cầu vàng đánh số từ 1 đến 4.
a.Có bao nhiêu cách lấy 3 quả cầu cùng màu,
A. 160.
B. 10.
C. 44.
D. 34
a.Số cách lấy 3 quả cầu cùng xanh: cách.
Số cách lấy 3 quả cầu cùng màu đỏ: cách.
Số cách lấy 3 quả cầu cùng vàng: cách.
Vậy số cách lấy 3 quả cầu cùng màu là:20+10=4=34 cách.
Chọn D
Có 6 quả cầu xanh đánh số từ 1 đến 6, 5 quả cầu đỏ đánh số từ 1 đến 5 và 4 quả màu vàng đánh số từ 1 đến 4. Hỏi có bao nhiêu cách lấy ra 3 quả cầu vàng khác màu vừa khác số?
Có 6 quả cầu xanh đánh số từ 1 đến 6, 5 quả cầu đỏ đánh số từ 1 đến 5 và 4 quả màu vàng đánh số từ 1 đến 4. Hỏi có bao nhiêu cách lấy ra 3 quả cầu vuwag khác màu vừa khác số?
A. 48
B. 16
C. 32
D. 64
Chọn D
Chọn cầu vàng: n 1 = 4 (cách chọn). Chọn cầu đỏ: n 2 = 5 - 1 = 4 (cách chọn).
Chọn cầu xanh n 3 = 6 - 2 = 4 (cách chọn). Theo quy tắc nhân, số cách chọn là: n = n 1 n 2 n 3 = 64
Một hộp chứa 6 quả cầu xanh được đánh số từ 1 đến 6, 5 quả cầu đỏ được đánh số từ 1 đến 5 và 4
quả cầu vàng được đánh số từ 1 đến 4 . Chọn ngẫu nhiên đồng thời 3 quả cầu từ hộp đó, tính xác suất để 3
quả cầu chọn được vừa khác màu vừa khác số.
Không gian mẫu: \(C_{15}^3=455\)
Số cách chọn 3 quả sao cho vừa khác màu vừa khác số:
\(4.4.4=64\)
Xác suất: \(P=\dfrac{64}{455}\)
Một hộp chứa 9 quả cầu có cùng kích thước và khối lượng, trong đó có 4 quả cầu màu xanh đánh số từ 1 đến 4, có 3 quả cầu màu vàng đánh số từ 1 đến 3, có 2 quả cầu màu đỏ đánh số 1 và 2. Lấy ngẫu nhiên 2 quả cầu từ hộp. Tính xác suất để 2 quả cầu được lấy vừa khác nhau vừa khác số.
- Số cách lấy ngẫu nhiên 2 quả cầu: \(n\left( \Omega \right) = C_9^2 = 36\)
- Số cách lấy 2 quả khác màu là:
+ 1 quả màu xanh và 1 quả màu vàng: \(C_4^1 \times C_3^1 = 12\)
+ 1 quả màu xanh và 1 quả màu đỏ: \(C_4^1 \times C_2^1 = 8\)
+ 1 quả màu đỏ và 1 quả màu vàng: \(C_2^1 \times C_3^1 = 6\)
=> Tổng số cách lấy ra 2 quả khác màu là: 26 cách
- Số cách lấy 2 quả khác màu trùng số:
+ 2 quả cùng là số 1: \(C_3^2 = 3\)
+ 2 quả cùng là số 2: \(C_3^2 = 3\)
+ 2 quả cùng là số 3: \(C_2^2 = 1\)
=> Tổng số cách lấy ra 2 quả khác màu trùng số là: 7 cách
=> Số cách lấy ra 2 quả khác màu khác số là: 26 – 7 = 19 (cách)
=> Xác suất để lấy ra 2 quả khác màu khác số là: \(P = \frac{{19}}{{36}}\)
Một hộp chứa 10 quả cầu đỏ được đánh số từ 1 đến 10, 20 quả cầu xanh được đánh số từ 1 đến 20. Lấy ngẫu nhiên một quả. Tìm xác suất sao cho quả được chọn:
a) Ghi số chẵn;
b) Màu đỏ;
c) Màu đỏ và ghi số chẵn;
d) Màu xanh hoặc ghi số lẻ.
Rõ ràng trong hộp có 30 quả với 15 quả ghi số chẵn, 10 quả màu đỏ, 5 quả màu đỏ ghi số chẵn, 25 quả màu xanh hoặc ghi số lẻ. Vậy theo định nghĩa
Trong đó A, B, C, D là các biến cố tương ứng với các câu a), b), c) ,d).
Một hộp chứa 10 quả cầu đỏ được đánh số từ 1 đến 10, 20 quả cầu xanh được đánh số từ 1 đến 20. Lấy ngẫu nhiên một quả. Khi đó xác suất để lấy được quả màu xanh hoặc ghi số lẻ bằng
A . 1 6
B . 2 3
C . 1 2
D . 5 6
Chọn D
Chọn ngẫu nhiên một quả trong 30 quả có 30 cách. Vậy n ( Ω ) = 30.
Gọi A là biến cố: “lấy được quả cầu màu xanh”.
Ta có n(A) = 20 => P(A) = 2 3
Gọi B là biến cố: “lấy được quả cầu ghi số lẻ”.
Ta có n(B) = 15 => P(B) = 1 2 .
Số quả cầu vừa màu xanh vừa ghi số lẻ: 10 (quả).
Xác suất để lấy được quả cầu vừa màu xanh vừa ghi số lẻ:
Xác suất để lấy được quả cầu màu xanh hay ghi số lẻ:
Một hộp chứa 15 quả cầu đỏ được đánh số từ 1 đến 15, 20 quả cầu xanh được đánh số từ 1 đến 20. Lấy ngẫu nhiên đồng thời hai quả. Khi đó xác suất để hai quả cầu lấy được đều màu đỏ hoặc đều ghi số chẵn bằng
A . 141 595
B . 241 595
C . 36 119
D . 44 119
Một hộp chứa 6 quả bóng đỏ (được đánh số từ 1 đến 6), 5 quả bóng vàng (được đánh số từ 1 đến 5), 4 quả bóng xanh (được đánh số từ 1 đến 4). Lấy ngẫu nhiên 4 quả bóng. Xác suất để 4 quả bóng lấy ra có đủ 3 màu mà không có hai quả bóng nào có số thứ tự trùng nhau bằng
A. 43 91
B. 48 91
C. 74 455
D. 381 455
Chọn đáp án C
Các trường hợp thuận lợi cho biến cố là
§ (Giải thích: Khi bốc mình sẽ bốc bi ít hơn trước tiên. Bốc 2 viên bi xanh từ 4 viên bi xanh nên có cách, tiếp theo bốc 1 viên bi vàng từ 3 viên bi vàng (do loại 2 viên cùng số với bi xanh đã bốc) nên có C 3 1 cách, cuối cùng bốc 1 viên bi đỏ từ 3 viên bi đỏ (do loại 2 viên cùng số với bi xanh và 1 viên cùng số với bi vàng) nên có C 3 1 cách).