Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nobita Kun
Xem chi tiết
Putin Thái
Xem chi tiết
Thắng Nguyễn
Xem chi tiết
khiem nguyenduy
Xem chi tiết
Ác Mộng
16 tháng 6 2015 lúc 10:56

Ta có:

a+b+c+8

=111...1(2n c/s 1)+111...1(n+1 c/s1)+666...6(n chữ số 6)+8

=111...1(n-1 c/s 1)2888...8(n c/s 8)+8

=111...1(n-1 c/s 1)2888..8(n-2 c/s 8)96

Ta thấy:

362(1c/s3)=1296(1 c/s 1;0 c/s 8)

3362(2c/s 3)=112896(2 c/s 1;1c/s 8)

33362(3c/s 3)=11128896(3 c/s 1;2 c/s 8)

=>333...362(n-1 c/s 3)=111...1(n-1 c/s 1)2888..8(n-2 c/s 8)96

=>a+b+c+8 là số chính phương(ĐPCM)

Anh Quốc
Xem chi tiết
Thuận Nguyễn Thị
Xem chi tiết
Nguyễn Thu Giang
13 tháng 7 2016 lúc 20:45

\(A=11...1\left(2n\right);B=11...1\left(n+1\right);C=66...6\left(n\right)\)

\(\Rightarrow A+B+C+8=11...1\left(2n\right)+11...1\left(n+1\right)+66...6\left(n\right)+8\)

\(=11...1\left(n\right).10^n+11...1\left(n\right)+11...1\left(n\right).10+1+6.11...1\left(n\right)+8\)

\(=11...1\left(n\right).10^n+17.11...1\left(n\right)+9\)

Đặt\(11...1\left(n\right)=a\)

\(\Rightarrow10^n=9a+1\)

\(\Rightarrow A+B+C+8=a\left(9a+1\right)+17a+9\)

\(=9a^2+18a+9a=\left(3a+3\right)^2\)

Thay \(a=11...1\left(n\right)\Rightarrow A+B+C+8=\left(3.11...1\left(n\right)+3\right)^2\)

Chú thích: n;n+1;2n là số chữ số

Đạt Anh
Xem chi tiết
vothithaiuyen
21 tháng 4 2022 lúc 1:15

ok

Nguyễn acc 2
21 tháng 4 2022 lúc 6:03

`a=11...11`(2n số 1)

`b=11...11`(n+1 số 1)

`c=66...66`(n số 6)

`->a+b+c+8=11...11+11...11+66...66+8`

\(=\dfrac{10^{2n}-1}{9}+\dfrac{10^{n+1}-1}{9}+\dfrac{6\left(10^n-1\right)}{9}+\dfrac{72}{9}\\ =\dfrac{10^n-1+10^{n+1}-1+6\left(10^n-1\right)+72}{9}\\ =\dfrac{\left(10^n\right)^2+10\cdot10^n+6\cdot10^n-6+70}{9}\\ =\dfrac{\left(10^n\right)^2+16\cdot10^n+64}{9}\\ =\left(\dfrac{10^n+8}{3}\right)^2\)

`->a+b+c+8` là số chính phương 

`->đpcm`

BÍCH THẢO
Xem chi tiết
Nguyễn Bảo Long
5 tháng 9 2023 lúc 19:52

tick giúp mình nha

Lời giải

Đặt k = 11...1(n chữ số 1).

Thì a = 11...1111(2n chữ số 1) = 11..100..0 + 11...11 = k(9k + 1) + k = 9k2 + 2k.

Tương tự, b = 10k + 1; c = 6k.

=> a + b + c + 8 = 9k2 + 2k + 10k + 1 + 6k + 8 = 9k2 + 18k + 9 = (3k + 3)2.

Vậy a + b + c + 8 là số chính phương.

Chứng minh lại

Ta có:

a + b + c + 8 = (9k2 + 2k) + (10k + 1) + (6k) + 8 = 9k2 + 18k + 9 = (3k + 3)2

Ta thấy rằng (3k + 3)2 là bình phương của số tự nhiên (3k + 3). Do đó, a + b + c + 8 là số chính phương.

Kết luận

Bằng cách đặt k = 11...1(n chữ số 1), ta có thể chứng minh được rằng a + b + c + 8 là số chính phương.

Jr Neymar
Xem chi tiết
I have a crazy idea
30 tháng 7 2017 lúc 9:22

a= 1 .... 1 ( 2n số 1 ) = 1 ... 1 ( n số 1 ) . 10n +1 ... 1 

 b = 1 ... 1 ( n + 1 số 1 ) = 1 ... 1 .10+1

c= 6..6 ( n số 6 ) = 6.1 ... 1 

Đặt k bằng 1...1 ( n số 1 ) => 10n = 9k + 1 

a + b + c +8 = k ( 9k + 2 ) + 10k +1 + 6k + 8 = 9k2 + 18k +9 = ( 3k + 3)2 là số chính phương 

Vậy...

Ps : k chắc cko mấy