Giả sử a là nghiệm của đa thức f ( x ) = 3 x + 4 , b là nghiệm của đa thức g ( x ) = - 4 x - 5 . Kết luận nào sau đây là đúng?
A. a < b
B. a > b
C. a = b
D. Không kết luận được
Bài 1: Cho đa thức bậc nhất: f(x) = ax + b và g(x) = bx + a (a và b khác 0). Giả sử đa thức f(x) có nghiệm là x0, tìm nghiệm của đa thức g(x)
Bài 2: Chứng tỏ rằng f(x) = -8x4 + 6x3 - 4x2 + 2x - 1 không có nghiệm nguyên.
Bài 3: Cho đa thức f(x) = ax3 + bx2 + cx + d có giá trị nguyên với mọi x thuộc Z. Chứng tỏ rằng 6a và 2b là các số nguyên
cho các số thực a, b, c và đa thức g(x)=x^3 + ax^2 + x + 10 có 3 nghiệm phân biệt. Biết rằng mỗi nghiệm của đa thức g(x) lại là nghiệm của đa thức f(x)=x^4 + x^3 + bx^2 + 100x + c. Tính giá trị của f(1)
Bài: a) Xác định đa thức f(x) = ax + b biết f(2) = - 4 ; F(3) = 5.
b) Xác định a và b biết nghiệm của đa thức G(x) = x2 – 1 là nghiệm của đa thức Q(x) = x3 + ax2 + bx – 2
Xác định a,b để nghiệm của đa thức F(x)=(x-3)(x+4) cũng là nghiệm của đa thức G(x)=x^2-ax+b
ta có: f(x)=(x-3)(x+4)=0 =>x-3=0 hoặc x+4=0
=>x=3 hoặc x=-4
vậy ta có nghiệm của đa thức f(x) là 3 và -4
mà nghiệm của đa thức f(x) cũng là nghiệm cảu đa thức g(x) nên thay vào ta được:
g(x)=3^2-3a+b=0 và g(x)=(-4)^2+4a+b=0
(=)9-3a+b=0 và 16+4a+b=0
(=)-3a+b=-9 (1) và 4a+b=-16 (2)
Trừ vế (1) cho vế (2) ta được -7a=7 => a=-1
thạy a=-1 vào (1) ta được (-3)*(-1)+b=-9 =>b=-12
Vậy a=-1 và b=-12
cho hai đa thức f(x)= (x-1)(x+3) và g(x)=x^3-ax^2+bx-3
xác định hệ số a,b của đa thức g(x) biết nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x)
mik nghĩ
bn có thể tham khảo ở link :
https://olm.vn/hoi-dap/question/902782.html
~~ hok tốt ~
Ta có :
\(\left(x-1\right)\left(x+3\right)=0\) ( nghiệm của đa thức \(f\left(x\right)\) )
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}}\)
Lại có : Nghiệm của đa thức \(f\left(x\right)\) cũng là nghiệm của đa thức \(g\left(x\right)\)
+) Thay \(x=1\) vào nghiệm của đa thức \(g\left(x\right)=x^3-ax^2+bx-3=0\) ta được :
\(1^3-a.1^2+b.1-3=0\)
\(\Leftrightarrow\)\(1-a+b-3=0\)
\(\Leftrightarrow\)\(a-b=1-3\)
\(\Leftrightarrow\)\(a-b=-2\) \(\left(1\right)\)
+) Thay \(x=-3\) vào nghiệm của đa thức \(g\left(x\right)=x^3-ax^2+bx-3=0\) ta được :
\(\left(-3\right)^3-a.\left(-3\right)^2+b.\left(-3\right)-3=0\)
\(\Leftrightarrow\)\(-27-9a+b.\left(-3\right)-3=0\)
\(\Leftrightarrow\)\(9a-3b=-27-3\)
\(\Leftrightarrow\)\(9a-3b=-30\)
\(\Leftrightarrow\)\(\left(-3\right)\left(-3a+b\right)=\left(-3\right).10\)
\(\Leftrightarrow\)\(b-3a=10\) \(\left(2\right)\)
Từ (1) và (2) suy ra :
\(a-b+b-3a=-2+10\)
\(\Leftrightarrow\)\(-2a=8\)
\(\Leftrightarrow\)\(a=\frac{8}{-2}\)
\(\Leftrightarrow\)\(a=-4\)
Do đó :
\(a-b=-2\)
\(\Leftrightarrow\)\(-4-b=-2\)
\(\Leftrightarrow\)\(b=2-4\)
\(\Leftrightarrow\)\(b=-2\)
Vậy các hệ số a, b là \(a=-4\) và \(b=-2\)
Chúc bạn học tốt ~
Xác định a và b để nghiệm của đa thức f(x)=(x-3)(x=4) cũng là nghiệm của đa thức g(x)=x^2 -ax +b
Cho hai đa thức:
f(x)=3x+3
g(x)=ax2-2
a)Tìm nghiệm đa thức F(x)
b)Xác định a biết nghiệm của đa thưc f(x) cũng là môt nghiệm của đa thức g(x)
\(f_{\left(x\right)}=3x+3=0\)
\(\Rightarrow\)\(3x=-3\)
\(\Rightarrow\)\(x=-1\)
vậy...
Cho hai đa thức sau:f(x) = ( x-1)(x+2); g(x) = x^3 + ax^2 + bx + 2
Xác định a và b biết nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x).
Đặt f(x)=0
=>(x-1)(x+2)=0
=>x=1 hoặc x=-2
Vì nghiệm của f(x) cũng là nghiệm của g(x) nên g(1)=0 và g(-2)=0
\(\Leftrightarrow\left\{{}\begin{matrix}1+a\cdot1^2+b\cdot1+2=0\\\left(-2\right)^3+a\cdot\left(-2\right)^2+b\cdot\left(-2\right)+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-3\\4a-2b=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=-3\end{matrix}\right.\)
Kiểm tra xem 1 số có phải lả nghiệm của đa thức 1 biến hay không ?
a, Cho đa thức: f(x) = 2x^2 + x - 3. Trong các số 1; -1; 2; 3 số nào là nghiệm của đa thức f(x) ?
b, Cho đa thức: g(x) = 5x^2 + 2x - 3. Trong các số 1; -1 số nào là nghiệm của đa thức g(x) ?