Rút gọn biểu thức:
b ) 4 x 4 - 64 9 x 3 + 9 : 8 x 2 - 32 x + 32 3 x 2 + 6 x + 3
Biểu thức (x-4)^2 - 2(x^2-16) + (x+4)^2 sau khi rút gọn có kết quả là:
A.64 B.4x^2 C.8 D.-64
Rút gọn biểu thức rồi tính gá trị của biểu thức tại x=-1/2
A=64-(x-4)(x^2+4x+16)
Rút gọn biểu thức
B=3x(2^2+1)x(2^4+1)x(2^8+1).........(2^64+1)+1
A = 3(2²+1)(2^4 + 1)....(2^64 + 1) + 1
= (2²-1)(2²+1)(2^4 + 1)....(2^64 + 1) + 1
= (2^4 - 1)(2^4 + 1)....(2^64 + 1) + 1
= (2^8 - 1).(2^8 + 1)(2^16 + 1)(2^32 + 1)(2^64 + 1) + 1
= (2^16 - 1)(2^16 + 1)(2^32 + 1)(2^64 + 1) + 1
= (2^32 - 1)(2^32 + 1)(2^64 + 1) + 1
= (2^64 - 1)(2^64 + 1) + 1 = 2^128 - 1 + 1 = 2^128.
B = 3(2²+1)(2^4 + 1)....(2^64 + 1) + 1
= (2²-1)(2²+1)(2^4 + 1)....(2^64 + 1) + 1
= (2^4 - 1)(2^4 + 1)....(2^64 + 1) + 1
= (2^8 - 1).(2^8 + 1)(2^16 + 1)(2^32 + 1)(2^64 + 1) + 1
= (2^16 - 1)(2^16 + 1)(2^32 + 1)(2^64 + 1) + 1
= (2^32 - 1)(2^32 + 1)(2^64 + 1) + 1
= (2^64 - 1)(2^64 + 1) + 1 = 2^128 - 1 + 1 = 2^128.
Cho biểu thức B = 16 x + 16 - 9 x + 9 + 4 x + 4 + x + 1
với x ≥ -1.
Rút gọn biểu thức B;
A = 2/(sqrt(x) - 2) a) Tính giá trị của biểu thức 1 khi x = 64 b ) Cho P = B : A Rút gọn biểu thức P. B = (3sqrt(x))/(x - 4) + 1/(sqrt(x) + 2) + 2/(2 - sqrt(x)) với x => 0 , x khác 4 c) Tìm các số nguyên x để P < 0 .
a: Khi x=64 thì \(A=\dfrac{2}{8-2}=\dfrac{2}{6}=\dfrac{1}{3}\)
b: \(P=B:A\)
\(=\dfrac{3\sqrt{x}+\sqrt{x}-2-2\left(\sqrt{x}+2\right)}{x-4}:\dfrac{2}{\sqrt{x}-2}\)
\(=\dfrac{4\sqrt{x}-2-2\sqrt{x}-4}{x-4}\cdot\dfrac{\sqrt{x}-2}{2}\)
\(=\dfrac{2\sqrt{x}-6}{2\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\)
c: P<0
=>căn x-3<0
=>0<=x<9
mà x nguyên và x<>4
nên \(x\in\left\{0;1;2;3;5;6;7;8\right\}\)
Rút gọn biểu thức : a . A = 4 √25x/4 - 8/3 √9x/4 - 4/3x √9x³/64 ( với x ≥ 0 ) b. B = y/2 + 3/4 √1-4y+4y² - 3/2 ( với y ≤ 1/2 )
a: \(A=4\cdot\dfrac{5}{2}\sqrt{x}-\dfrac{8}{3}\cdot\dfrac{3}{2}\sqrt{x}-\dfrac{4}{3x}\cdot\dfrac{3x}{8}\cdot\sqrt{x}\)
\(=10\sqrt{x}-4\sqrt{x}-\dfrac{1}{2}\sqrt{x}\)
\(=\dfrac{11}{2}\sqrt{x}\)
b: \(B=\dfrac{y}{2}+\dfrac{3}{4}\cdot\left|2y-1\right|-\dfrac{3}{2}\)
\(=\dfrac{y}{2}+\dfrac{3}{4}\left(1-2y\right)-\dfrac{3}{2}\)
=1/2y+3/4-3/2y-3/2
=-y-3/4
Rút gọn biểu thức A rồi tính giá trị của biểu thwucs tại x=-1/2
A=64-(x-4)(x^2+4x+16)
Bài làm:
Ta có: \(A=64-\left(x-4\right)\left(x^2+4x+16\right)\)
\(A=64-x^3+64\)
\(A=128-x^3\)
Tại \(x=-\frac{1}{2}\) ta được:
\(A=128-\left(-\frac{1}{2}\right)^3=\frac{1025}{8}\)
A = 64 - ( x - 4 )( x2 + 4x + 16 )
A = 64 - ( x3 + 4x2 + 16x - 4x2 - 16x - 64 )
A = 64 - ( x3 - 64 )
A = 64 - x3 + 64
A = -x3 + 128
Thế x = -1/2 vào A ta được :
A = -(-1/2)3 + 128 = 1/8 + 128 = 1025/8
\(A=64-\left(x-4\right)\left(x^2+4x+16\right)\)
\(=64-\left(x-4\right)\left(x^2-4x+4^2\right)\)
\(=64-\left(x^3-4^3\right)=64-x^3+4^3\)
\(=64+64-x^3=128-x^3\)
Với \(x=-\frac{1}{2}\)thì \(128-x^3=128-\left(-\frac{1}{2}\right)^3\)
\(=128-\left(-\frac{1}{8}\right)=128+\frac{1}{8}=\frac{1025}{8}\)
cho biểu thức A=(3\sqrt(x)+1)/(\sqrt(x)+2) và B=((2)/(\sqrt(x)+2)-(\sqrt(x)-5)/(x-4))-:(\sqrt(x)+1)/(\sqrt(x)-2) (x>=0; x khác 4)
a) tính giá trị biểu thức a khi x =64
b) rút gọn B
c) cho P=A-B tìm x để P có giá trị là số tự nhiên
a: Khi x=64 thì \(A=\dfrac{3\cdot8+1}{8+2}=\dfrac{25}{10}=\dfrac{5}{2}\)
b: \(B=\dfrac{2\sqrt{x}-4-\sqrt{x}+5}{x-4}\cdot\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=\dfrac{1}{\sqrt{x}+2}\)
Cho biểu thức A=2√x - 3/√x - 2 và B=2/√x+3 + √x/√x-3 + 4√x/9-x với x≥0; x≠4; x≠9. a) tính giá trị biểu thức A khi x thỏa mãn |x-2|=2. b) rút gọn biểu thức B. c) đặt C=A.B. Tìm x để C≥1.
`a)|x-2|=2<=>[(x=4(ko t//m)),(x=0(t//m)):}`
Thay `x=0` vào `A` có: `A=[2\sqrt{0}-3]/[\sqrt{0}-2]=3/2`
`b)` Với `x >= 0,x ne 4` có:
`B=[2(\sqrt{x}-3)+\sqrt{x}(\sqrt{x}+3)-4\sqrt{x}]/[(\sqrt{x}+3)(\sqrt{x}-3)]`
`B=[2\sqrt{x}-6+x+3\sqrt{x}-4\sqrt{x}]/[(\sqrt{x}+3)(\sqrt{x}-3)]`
`B=[x+\sqrt{x}-6]/[(\sqrt{x}+3)(\sqrt{x}-3)]`
`B=[(\sqrt{x}+3)(\sqrt{x}-2)]/[(\sqrt{x}+3)(\sqrt{x}-3)]`
`B=[\sqrt{x}-2]/[\sqrt{x}-3]`
`c)` Với `x >= 0,x ne 4` có:
`C=A.B=[2\sqrt{x}-3]/[\sqrt{x}-2].[\sqrt{x}-2]/[\sqrt{x}-3]=[2\sqrt{x}-3]/[\sqrt{x}-3]`
Có: `C >= 1`
`<=>[2\sqrt{x}-3]/[\sqrt{x}-3] >= 1`
`<=>[2\sqrt{x}-3-\sqrt{x}+3]/[\sqrt{x}-3] >= 0`
`<=>[\sqrt{x}]/[\sqrt{x}-3] >= 0`
Vì `x >= 0=>\sqrt{x} >= 0`
`=>\sqrt{x}-3 > 0`
`<=>x > 9` (t/m đk)
Rút gọn biểu thức A = 5 ( x + 4 ) 2 + 4 ( x – 5 ) 2 – 9 ( 4 + x ) ( x – 4 ) , ta được
A. 342
B. 243
C. 324
D. -324
Ta có
A = 5 ( x + 4 ) 2 + 4 ( x – 5 ) 2 – 9 ( 4 + x ) ( x – 4 ) = 5 ( x 2 + 2 . x . 4 + 16 ) + 4 ( x 2 – 2 . x . 5 + 5 2 ) – 9 ( x 2 – 4 2 ) = 5 ( x 2 + 8 x + 16 ) + 4 ( x 2 – 10 x + 25 ) – 9 ( x 2 – 4 2 ) = 5 x 2 + 40 x + 80 + 4 x 2 – 40 x + 100 – 9 x 2 + 144 = ( 5 x 2 + 4 x 2 – 9 x 2 ) + ( 40 x – 40 x ) + ( 80 + 100 + 144 )
= 324
Đáp án cần chọn là: C