lx-y|+|x+y|=2^|x-y|+99
tim x,y biet:
3lx-2l-lx+1l=x+5
lx-2l+lx+2l=4-y^2 với x,y thuộc Z.
a: TH1: x<-1
Pt sẽ là 3(2-x)-(-x-1)=x+5
=>6-3x+x+1=x+5
=>-3x+7=5
=>-3x=-2
=>x=2/3(loại)
TH2: -1<=x<2
Pt sẽ là 3(2-x)-x-1=x+5
=>6-3x-x-1=x+5
=>-4x+5=x+5
=>x=0(nhận)
TH3: x>=2
Pt sẽ là 3x-6-x-1=x+5
=>2x-7=x+5
=>x=12(nhận)
b: TH1: x<-2
Pt sẽ là 2-x-x-2=4-y^2
=>-2x=4-y^2
=>2x=y^2-4
=>2x-y^2=-4
TH2: -2<=x<2
Pt sẽ là 2-x+x+2=4-y^2
=>-y^2=0
=>y=0
TH3: x>=2
Pt sẽ là x-2+x+2=4-y^2
=>2x+y^2=4
1/ Giá trị x thỏa mãn
lx2+lx+1ll=x2
2/ Số cặp x,y thỏa mãn
x(x+y)=-45
y(x+y)=5
tìm x,y,z biết:
a,3lx+2l-lx+1l=x+5
b,lx-2l+lx+2l=4-y^2 với x,y thuộc Z.
a: TH1: x<-2
Pt sẽ là -3x-6+x+1=x+5
=>-2x-5=x+5
=>-3x=10
=>x=-10/3(nhận)
TH2: -2<=x<-1
Pt sẽ là 3x+6+x+1=x+5
=>3x+7=5
=>3x=-2
=>x=-2/3(loại)
TH3: x>=-1
Pt sẽ là 3x+6-x-1=x+5
=>2x+5=x+5
=>x=0(nhận)
b: TH1: x<-2
Pt sẽ là 2-x-x-2=4-y^2
=>-2x=4-y^2
=>2x=y^2-4
=>2x-y^2=-4
TH2: -2<=x<2
Pt sẽ là x+2+2-x=4-y^2
=>4=4-y^2
=>y=0
TH3: x>=2
Pt sẽ là x+2+x-2=4-y^2
=>2x=-y^2
tìm x,y thuộc Z:
lx-1l+lx-2l+lx-3l=2-y^2
lx+1l+3y^2=5
Bài1: Tìm x,y biết
a) |1/2-1/3+x| = -1/4 - |y|
b)|x-y|+ |y+9/25l = 0
Bài 2 : Tìm x , biết
a) lx-5/3l<1/3
b)2/5< lx-7/5|<3/5
c) lx+11/2|> l-5/5|
giúp mik với
Bài 2 :
a, \(\left|x-\frac{5}{3}\right|< \frac{1}{3}\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{5}{3}< \frac{1}{3}\\x-\frac{5}{3}< -\frac{1}{3}\end{cases}\Leftrightarrow\orbr{\begin{cases}x< 2\\x< \frac{4}{3}\end{cases}}}\)
b, \(\frac{2}{5}< \left|x-\frac{7}{5}\right|< \frac{3}{5}\)
\(\orbr{\begin{cases}\frac{2}{5}< x-\frac{7}{5}< \frac{3}{5}\\\frac{2}{5}< -x+\frac{7}{5}< \frac{3}{5}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{9}{5}< x< 2\\1>x>\frac{4}{5}\end{cases}}\)
1/ Giá trị x thỏa mãn
lx2+lx+1ll=x2
2/ Số cặp x,y thỏa mãn
x(x+y)=-45
y(x+y)=5
3/ Số tự nhiên n nhỏ nhất để 2n-1 chia hết cho 259
Tìm các số nguyên x,y thỏa mãn
lx+2l+lx-1l=3-2(y+2)2
a)Tìm giá trị nhỏ nhất của biểu thức A = lx-1l + lx+2019l
b) Cho x,y,z khác 0; x + y khác 0; \(\frac{x}{z}\)=\(\frac{z}{y}\). Chứng minh rằng: \(\frac{x^2+z^2}{y^2+z^2}\)=\(\frac{x}{y}\)
a,Ta có A=|x-1|+|x+2019|=|1-x|+|x+2019|>=|1-x+x+2019|=2020
=>A>2020
Dấu''='' xảy ra <=>(1-x)(x+2019)>0
<=>(x-1)(x+2019)<0
<=>-2019<x<1
Vậy MIN(A)=2020<=>-2019<x<1
có gì sai bạn bỏ qua nhé>3
b) \(\frac{x}{z}=\frac{z}{y}\Rightarrow\left(\frac{x}{z}\right)^2=\left(\frac{z}{y}\right)^2=\frac{x.z}{z.y}\)
\(\Rightarrow\frac{x^2}{z^2}=\frac{z^2}{y^2}=\frac{x}{y}\)
\(\Rightarrow\frac{x^2+z^2}{z^2+y^2}=\frac{x}{y}\)
Tìm các cặp số nguyên x,y thỏa mãn
lx+2l+lx-1l=3-(y+2)^2
Ta có: \(\hept{\begin{cases}\left|x+2\right|+\left|x-1\right|=\left|x+2\right|+\left|1-x\right|\ge\left|x+2+1-x\right|=3\\3-\left(y+2\right)^2\le3\end{cases}}\)
Dấu "=" xảy ra khi:\(\hept{\begin{cases}-2\le x\le1\\y=-2\end{cases}}\)