Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 12 2019 lúc 13:44

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 9 2019 lúc 14:21

Đáp án A

Ta có y ' = − 1 x 2 = − 1 1 . 1 ! x 2 ; y ' ' = − 2 x 3 = − 1 2 . 2 ! x 3 ; y ' ' ' = − 6 x 4 = − 1 3 . 3 ! x 4 .

 Dự đoán y n = − 1 n . n ! x n + 1 * . Chứng minh mệnh đề (*):

* Với n=1 thì * ⇔ y ' = − 1 x 2 . Khi đó (*) đúng.

* Giả sử (*) đúng với  n = k , k ≥ 1 , tức là  y k = − 1 k . k ! x k + 1 .

Khi đó y k + 1 = y k ' = − 1 k . k ! x k + 1 = − 1 k . − k + 1 . k ! . x k x k + 1 2 = − 1 k + 1 . k + 1 ! x k + 2 . Vậy mệnh đề (*) cũng đúng với n=k+1 nên nó đúng với mọi n.

Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 14:51

a) Với bất kì \({x_0} \in \mathbb{R}\), ta có:

\(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{x - {x_0}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} 1 = 1\)

Vậy \(f'\left( x \right) = {\left( x \right)^\prime } = 1\) trên \(\mathbb{R}\).

b) Ta có:

\(\begin{array}{l}{\left( {{x^2}} \right)^\prime } = 2{\rm{x}}\\{\left( {{x^3}} \right)^\prime } = 3{{\rm{x}}^2}\\...\\{\left( {{x^n}} \right)^\prime } = n{{\rm{x}}^{n - 1}}\end{array}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 11 2017 lúc 9:31

Đáp án A

Phương pháp:

Dựa vào khái niệm cực trị và các kiến thức liên quan.

Cách giải:

(1) chỉ là điều kiện cần mà không là điều kiện đủ.

VD hàm số y = x3 có y' = 3x2 = 0 ⇔ x = 0. Tuy nhiên x = 0 không là điểm cực trị của hàm số.

(2) sai, khi f''(x0) = 0, ta không có kết luận về điểm x0 có là cực trị của hàm số hay không.

(3) hiển nhiên sai.

Vậy (1), (2), (3): sai; (4): đúng

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 12 2017 lúc 4:15

Đáp án C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 4 2018 lúc 16:47

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 9 2018 lúc 12:36

Đáp án A

Ta có: y ' =    − 1 ( x − 3 ) 2 . ( x − 3 ) ' = − 1 ( x − 3 ) 2 y " = − 1 ( x − 3 ) 2 ' = − − 1 ( x − 3 ) 4 = 1 ( x − 3 ) 4 .2 ( ​ x − 3 ) = 2 ( x − 3 ) 3  ;  

⇒ y " ( 1 ) = 2 ( 1 − 3 ) 3 = − 1 4 .

Buddy
Xem chi tiết
Quoc Tran Anh Le
22 tháng 9 2023 lúc 20:19

a)      

\(\begin{array}{l}f'({x_0}) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f(x) - f({x_0})}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{x^2} - x_0^2}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{e^{2.\ln x}} - {e^{2.\ln {x_0}}}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{e^{2.\ln {x_0}}}.\left( {{e^{2\ln x - 2\ln {x_0}}} - 1} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{x_0^2\left( {{e^{2.\ln x - 2\ln {x_0}}} - 1} \right)}}{{x - {x_0}}}\\ = \mathop {\lim }\limits_{x \to {x_0}} \frac{{x_0^2\left( {2\ln x - 2\ln {x_0}} \right)}}{{x - {x_0}}} = 2x_0^2\mathop {\lim }\limits_{x \to {x_0}} \frac{{\ln \left( {\frac{x}{{{x_0}}}} \right)}}{{x - {x_0}}} = 2x_0^2\mathop {\lim }\limits_{x \to {x_0}} \frac{{\ln \left( {1 + \frac{x}{{{x_0}}} - 1} \right)}}{{x - {x_0}}} = 2x_0^2\mathop {\lim }\limits_{x \to {x_0}} \frac{{\frac{x}{{{x_0}}} - 1}}{{x - {x_0}}} = 2x_0^2\mathop {\lim }\limits_{x \to {x_0}} \frac{{\frac{{x - {x_0}}}{{{x_0}}}}}{{x - {x_0}}} = 2x_0^2\mathop {\lim }\limits_{x \to {x_0}} \frac{1}{{{x_0}}}\\ = 2x_0^2.\frac{1}{{{x_0}}} = 2x\\ \Rightarrow \left( {{x^2}} \right)' = 2x\end{array}\)

b) Dự đoán đạo hàm của hàm số \(y = {x^n}\) tại điểm x bất kì: \(y' = n.{x^{n - 1}}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 3 2017 lúc 17:33

Đáp án A

A sai vì hàm số y = x 3  có y ' 0 = 0  nhưng không đạt cực trị tại x = 0

B sai vì hàm số y = x 4 có y ' 0 = 0 , y ' ' 0 = 0 đạo hàm và có đạo hàm cấp hai tại điểm  x 0  thoả mãn điều kiện f ' x 0 = f ' ' x 0 = 0  thì điểm  x 0 nhưng không đạt cực trị tại x = 0

C sai vì “Nếu f ' x  đổi dấu khi x qua  x 0  thì điểm  x 0  là điểm trị (cực đại và cực tiểu) của hàm số  y = f ' ' x

D sai vì “Nếu hàm số y = f x có đạo hàm và có đạo hàm cấp hai tại điểm  x 0 thoả mãn điều kiện f ' x 0 = 0 ; f ' ' x 0 > 0  thì điểm x 0 là điểm cực đại của hàm số  y = f ' ' x