Tính các góc của 1 tứ giác ABCD bt số đo của chúng tỉ lệ với 2;3;4;1.
Bài 3:
a. Tính các góc của tứ giác ABCD bt số đo của chúng tương ứng với tỉ lệ với 2;2;1;1
b. Tứ giác ABCD cho ở câu a là hình gì? Vì sao?
( vẽ hình nữa nha)
a, Ta có \(\widehat{A}:\widehat{B}:\widehat{C}:\widehat{D}=2:2:1:1\Rightarrow\dfrac{\widehat{A}}{2}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{1}=\dfrac{\widehat{D}}{1}\) và \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\)
Áp dụng t/c dtsbn:
\(\dfrac{\widehat{A}}{2}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{1}=\dfrac{\widehat{D}}{1}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{1+1+2+2}=\dfrac{360^0}{6}=60^0\\ \Rightarrow\left\{{}\begin{matrix}\widehat{A}=120^0\\\widehat{B}=120^0\\\widehat{C}=60^0\\\widehat{D}=60^0\end{matrix}\right.\)
b, Vì \(\widehat{A}+\widehat{C}=120^0+60^0=180^0\) mà 2 góc này ở vị trí TCP nên AB//CD
Do đó ABCD là hình thang
Vì \(\widehat{A}=\widehat{B}=120^0\) nên ABCD là hình thang cân
Cho tứ giác ABCD biết số đo của các góc A, B, C, D tỉ lệ thuận với 1,2,3,4.
Tính số đo của các góc trong tứ giác ABCD.
Tính các góc của tứ giác ABCD biết số đo của các góc tỉ lệ với các số
3: 6 : 4: 5
Áp dụng tc dtsbn:
\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{6}=\dfrac{\widehat{C}}{4}=\dfrac{\widehat{D}}{5}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{3+6+4+5}=\dfrac{360^0}{18}=20^0\\ \Rightarrow\left\{{}\begin{matrix}\widehat{A}=60^0\\\widehat{B}=120^0\\\widehat{C}=80^0\\\widehat{D}=100^0\end{matrix}\right.\)
Tính số đo các góc của tứ giác ABCD. Biết rằng các góc A; B; C; D tỉ lệ với 6; 5; 3; 4.
ta có A;B;C;D tỉ lệ với 6;5;3;4
suy ra: A/6=B/5=C/3=D/4
Áp dụng dãy tỉ số bằng nhau :
A/6=B/5=C/3=D/4=A+B+C+D/6+5+3+4=360/18=20
suy ra A=20*6=120*
B=20*5=100*
C=20*3=60*
D=20*4=80*
vậy A=120*;B=100*;C=60*;D=80*
1, cho tứ giác abcd có các số đo các góc ABCD tỉ lệ với 6,8,10,12 tính số đo các góc . giúp mình với
2,Cho tứ giác ABCD .Chứng minh ràng :AB+CD<AC+BD<AB+BC+CD+AD .MÌNH CẦN GẤP LẮM
Bài 1: Cho tứ giác ABCD biết số đo của các góc A; B; C; D tỉ lệ thuận với 5; 8; 13 và 10.
a/ Tính số đo các góc của tứ giác ABCD
b/ Kéo dài hai cạnh AB và DC cắt nhau ở E, kéo dài hai cạnh AD và BC cắt nhau ở F. Hai tia phân giác của các góc AED và góc AFB cắt nhau ở O. Phân giác của góc AFB cắt các cạnh CD và AB tại M và N. Chứng minh O là trung điểm của đoạn MN.
Bài 1: Cho tứ giác ABCD biết số đo của các góc A; B; C; D tỉ lệ thuận với 5; 8; 13 và 10.
a/ Tính số đo các góc của tứ giác ABCD
b/ Kéo dài hai cạnh AB và DC cắt nhau ở E, kéo dài hai cạnh AD và BC cắt nhau ở F. Hai tia phân giác của các góc AED và góc AFB cắt nhau ở O. Phân giác của góc AFB cắt các cạnh CD và AB tại M và N. Chứng minh O là trung điểm của đoạn MN.
:Bài 1 : Cho tứ giác ABCD biết số đo của các góc A; B; C; D tỉ lệ thuận với 5; 8; 13 và 10.
a/ Tính số đo các góc của tứ giác ABCD
b/ Kéo dài hai cạnh AB và DC cắt nhau ở E, kéo dài hai cạnh AD và BC cắtnhau ở F. Hai tia phân giác của các góc AED và góc AFB cắt nhau ở O. Phân giáccủa góc AFB cắt các cạnh CD và AB tại M và N. Chứng minh O là trung điểm củađoạn MN
a: Gọi số đo các góc A,B,C,D lần lượt là a,b,c,d
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{5}=\dfrac{b}{8}=\dfrac{c}{13}=\dfrac{d}{10}=\dfrac{a+b+c+d}{5+8+13+10}=\dfrac{360}{36}=10\)
Do đó: a=50; b=80; c=130; d=100
tìm số đo các góc chưa bt của tứ giác trong từng trường hợp sau:
a) tứ giác có các góc 800, 700 và 2 góc còn lại góc này gấp 2 lần góc kia
b) tứ giác có số đo góc lần lượt tỉ lệ vs 1:2:4:5
a) Gọi A = 80°
B = 70°
D = 2C
=> C+D = 360 - 70 - 80 = 210
=> 2C + C = 210°
=> 3C = 210°
=> C = 70°
=> D = 70 × 2 = 140°
b) Ta có : A = B/2=C/4 = D/5
Áp dụng tính chất dãy tỉ số bằng nhau ta có
=> A = 30°
=> B = 60°
=> C = 120°
=> D = 150°