Chứng minh rằng n ( n + 1 ) ( 2 n + 1 ) ⋮ 6
Câu 4:
a. Chứng minh rằng: \(\sqrt{22-12\sqrt{2}}\) + \(\sqrt{6+4\sqrt{2}}\) = 4\(\sqrt{2}\)
b. Chứng minh rằng: \(\dfrac{1}{\sqrt{n}+\sqrt{n+1}}\) = \(\sqrt{n+1}\) - \(\sqrt{n}\)
\(a,\sqrt{22-12\sqrt{2}}+\sqrt{6+4\sqrt{2}}=\sqrt{\left(3\sqrt{2}-2\right)^2}+\sqrt{\left(2+\sqrt{2}\right)^2}\\ =3\sqrt{2}-2+2+\sqrt{2}=4\sqrt{2}\\ b,\dfrac{1}{\sqrt{n}+\sqrt{n+1}}=\dfrac{\sqrt{n}-\sqrt{n+1}}{n-n-1}\\ =\dfrac{\sqrt{n}-\sqrt{n+1}}{-1}=\sqrt{n+1}-\sqrt{n}\)
a) \(\sqrt{22-12\sqrt{2}}+\sqrt{6+4\sqrt{2}}\)
\(=\sqrt{\left(3\sqrt{2}-2\right)^2}+\sqrt{\left(2+\sqrt{2}\right)^2}\)
\(=3\sqrt{2}-2+2+\sqrt{2}=4\sqrt{2}\)
b) \(\dfrac{1}{\sqrt{n}+\sqrt{n+1}}=\dfrac{\sqrt{n+1}-\sqrt{n}}{n+1-n}=\sqrt{n+1}-\sqrt{n}\)
Cho n là số tự nhiên. Chứng minh rằng:
a, (n+2)(n+5) ⋮ 2
b, n(n+1)(n+2) ⋮ 6
c, n(n+1)(2n+1) ⋮ 6
a, Xét các dạng của n khi chia cho 2: n = 2k; n = 2k+1(k ∈ N)
+) Nếu n = 2k
(n+2)(n+5) = (2k+2)(2k+5) = 2(2k+1)(2k+5) ⋮ 2
+) Nếu n = 2k+1
(n+2)(n+5) = (2k+3)(2k+6) = 2(2k+3)(k+3) ⋮ 2
Vậy được điều phải chứng minh.
b, c, Tương tự với các TH: n = 3k; n = 3k+1; n = 3k+2(k ∈ N)
Cho n là số tự nhiên. Chứng minh rằng:
a) ( n + 2 ) ( n + 5 ) ⋮ 2
b) n ( n + 1 ) ( n + 2 ) ⋮ 6
c) n ( n + 1 ) ( 2 n + 1 ) ⋮ 6
1) Cho 2 số tự nhiên a và b, biết 2 chia cho 6 dư 2 và b chia cho 6 dư 3. . Chứng minh rằng ab chia hết cho 6.
2) Cho a và b là 2 sớ tự nhiên, biết a chia cho 5 dư 2 và b chia cho 5 dư 3 . Chứng minh rằng ab chia cho 5 dư 1.
3) Cho 2 số tự nhiên a và b, biết a chia cho 6 dư 3 và ab chia hết cho 6. . Hỏi b chia cho 6 có số dư là bao nhiêu? Chứng minh.
4) Chứng minh rằng: n (2n - 3) - 2n (n + 1) luôn chia hết cho 5 với n là số tự nhiên.
5) Chứng minh rằng với mọi số nguyên n biểu thức (n - 1) (n + 4) - (n - 4) (n + 1) luôn chia hết cho 6.
Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6
chứng minh rằng n.( n + 1 ) . ( 2.n + 1 ) chia hết cho 6
n(n+1)(2n+1) = n(n+1)(n+2+n-1)=n(n+1)(n+2)+(n-1)(n+1)n
ba số liên tiếp thì chia hết cho 2 ; chia hết cho 3 --> tổng trên chia hết cho 6
n(n+1)(2n+1) = n(n+1)(n+2+n-1)=n(n+1)(n+2)+(n-1)(n+1)n
ba số liên tiếp thì chia hết cho 2 ; chia hết cho 3 --> tổng trên chia hết cho 6
Chứng minh rằng:
n(n+1)(n+2) chia hết cho 6
Ta có n ; n+1 ; n+2 là 3 số tự nhiên liên tiếp
Vì trong 3 số tự nhiên liên tiếp , có ít nhất 1 số chia hết cho 2
\(\Rightarrow\) n(n+1)(n+2) \(⋮\) 2 (1)
Vì trong 3 số tự nhiên liên tiếp , có 1 số chia hết cho 3
\(\Rightarrow\) n(n+1)(n+2) \(⋮\) 3 (2)
Từ (1) và (2) \(\Rightarrow\) n(n+1)(n+2) \(⋮\) (2.3) ( Vì ƯCLN(2,3)=1 )
\(\Rightarrow\) n(n+1)(n+2) \(⋮\) 6 (ĐPCM)
Vậy...
Ta có n ; n+1 ; n+2 là 3 số tự nhiên liên tiếp
Vì trong 3 số tự nhiên liên tiếp , có ít nhất 1 số chia hết cho 2
n(n+1)(n+2) 2 (1)
Vì trong 3 số tự nhiên liên tiếp , có 1 số chia hết cho 3
n(n+1)(n+2) 3 (2)
Từ (1) và (2) n(n+1)(n+2) (2.3) ( Vì ƯCLN(2,3)=1 )
n(n+1)(n+2) 6 (ĐPCM)
chứng minh rằng (n-1)^2*(n+1)+(n^2-1) luôn chia hết cho 6 với mọi số nguyên n
\(\left(n-1\right)^2\cdot\left(n+1\right)+\left(n^2-1\right)\)
\(=\left(n^2-1\right)\left(n-1\right)+\left(n^2-1\right)\)
\(=\left(n^2-1\right)\left(n-1+1\right)\)
\(=n\cdot\left(n-1\right)\left(n+1\right)\)
Vì n; n-1; n+1 là 3 số nguyên liên tiếp
=> \(n\left(n-1\right)\left(n+1\right)⋮3\) (1)
Vì n; n-1 là 2 số nguyên liên tiếp
\(\Rightarrow n\left(n-1\right)⋮2\)
\(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮2\) (2)
Từ (1) và (2)
=>\(n\left(n-1\right)\left(n+1\right)⋮6\)
Hay \(\left(n-1\right)^2\cdot\left(n+1\right)+\left(n^2-1\right)⋮6\)
Vậy....
chứng minh rằng B=n^2(n+2)+n(n+2) chia hết cho 6 với 1 số nguyên n
\(B=n^2\left(n+2\right)+n\left(n+2\right)\)
\(=n\left(n+1\right)\left(n+2\right)\)
Vì n;n+1;n+2 là ba số nguyên liên tiếp
nên \(n\left(n+1\right)\left(n+2\right)⋮3!\)
hay \(B⋮6\)
Chứng minh rằng:
(n - 1)2 (n + 1) + (n2 - 1)
luôn chia hết cho 6 với mọi số nguyên n
\(\left(n-1\right)^2\cdot\left(n+1\right)+\left(n^2-1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n-1+1\right)\)
\(=\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮6\)
Chứng minh rằng: 1/4^2 + 1/6^2 + 1/8^2 +...+ 1/(2n)^2 <1/4 ( n thuộc N, n lớn hơn hoặc bằng 2 )
A=1/4^2+1/6^2+...+1/(2n)^2
=1/4(1/2^2+1/3^2+...+1/n^2)
=>A<1/4(1-1/2+1/2-1/3+...+1/n-1-1/n)
=>A<1/4(1-1/n)<1/4