Cho tứ giác ABCD có A ^ = 80 ° . Tổng số đo các góc ngoài đỉnh B, C, D bằng:
A. 180 °
B. 260 °
C. 280 °
D. 270 °
Cho tứ giác ABCD có A ^ = 100 ° . Tổng số đo các góc ngoài đỉnh B, C, D bằng:
A. 180 °
B. 260 °
C. 280 °
D. 270 °
Đáp án cần chọn là: C
Gọi góc ngoài tại 4 đỉnh A, B, C, D của tứ giác ABCD lần lượt là A 1 ^ ; B 1 ^ ; C 1 ^ ; D 1 ^ .
Khi đó ta có :
A ^ + A 1 ^ = 180 ° ⇒ A 1 ^ = 180 ° - A ^ ;
Theo kết quả các câu trước ta có
A 1 ^ + B 1 ^ + C 1 ^ + D 1 ^ = 360 ° ⇒ B 1 ^ + C 1 ^ + D 1 ^ = 360 ° - A ^ = 360 ° - 80 ° = 280 °
Vậy B 1 ^ + C 1 ^ + D 1 ^ = 280 °
Cho tứ giác ABCD có tổng số đo góc ngoài tại hai đỉnh B và C là 200 ° . Tổng số đo các góc ngoài tại 2 đỉnh A, C là:
A. 160 °
B. 260 °
C. 180 °
D. 100 °
Đáp án cần chọn là: A
Gọi góc ngoài tại 4 đỉnh A, B, C, D của tứ giác ABCD lần lượt là A 1 ^ ; B 1 ^ ; C 1 ^ ; D 1 ^ .
Khi đó ta có :
A ^ + A 1 ^ = 180 ° ⇒ A 1 ^ = 180 ° - A ^ ; B ^ + B 1 ^ = 180 ° ⇒ B 1 ^ = 180 ° - B ^ ; C ^ + C 1 ^ = 180 ° ⇒ C 1 ^ = 180 ° - C ^ ; D ^ + D 1 ^ = 180 ° ⇒ D 1 ^ = 180 ° - D ^ ;
Suy ra
A 1 ^ + B 1 ^ + C 1 ^ + D 1 ^ = 180 ° - A ^ + 180 ° - B ^ + 180 ° - C ^ + 180 ° - D ^ = 720 ° - A ^ + B ^ + C ^ + D ^ = 720 ° - 360 ° = 360 °
Vậy tổng số đo các góc ngoài tại 4 đỉnh A, B, C, D là 360 ° .
Mà tổng số đo góc ngoài tại hai đỉnh B, C bằng 200 ° nên tổng số đo góc ngoài tại hai đỉnh A, D bằng 360 ° - 200 ° = 160 °
Bài 19 Cho tứ giác ABCD có Â = 800. Tổng số đo các góc ngoài đỉnh B, C, D bằng:
Tổng số đo các góc ngoài đỉnh B,C,D là 260 độ
Cho tứ giác ABCD. Tổng số đo các góc ngoài tại 4 đỉnh A, B, C, D là:
A. 300 °
B. 270 °
C. 180 °
D. 360 °
Đáp án cần chọn là: D
Gọi góc ngoài tại 4 đỉnh A, B, C, D của tứ giác ABCD lần lượt là A 1 ^ ; B 1 ^ ; C 1 ^ ; D 1 ^ .
Khi đó ta có :
A ^ + A 1 ^ = 180 ° ⇒ A 1 ^ = 180 ° - A ^ ; B ^ + B 1 ^ = 180 ° ⇒ B 1 ^ = 180 ° - B ^ ; C ^ + C 1 ^ = 180 ° ⇒ C 1 ^ = 180 ° - C ^ ; D ^ + D 1 ^ = 180 ° ⇒ D 1 ^ = 180 ° - D ^ ;
Suy ra
A 1 ^ + B 1 ^ + C 1 ^ + D 1 ^ = 180 ° - A ^ + 180 ° - B ^ + 180 ° - C ^ + 180 ° - D ^ = 720 ° - A ^ + B ^ + C ^ + D ^ = 720 ° - 360 ° = 360 °
Vậy tổng số đo các góc ngoài tại 4 đỉnh A, B, C, D là 360 ° .
Cho tứ giác ABCD. Tổng số đo các góc ngoài tại 4 đỉnh A, B, C, D là
A. 3000
B. 2700
C. 1800
D. 3600
Tứ giác \(ABCD\) có góc ngoài tại đỉnh \(A\) bằng \(65^\circ \), góc ngoài tại đỉnh \(B\) bằng \(100^\circ \), góc ngoài tại đỉnh \(C\) bằng \(60^\circ \). Tính số đo góc ngoài tại đỉnh \(D\).
Số đo góc ngoài tại đỉnh \(D\) là: \(360^\circ - \left( {65^\circ + 100^\circ + 60^\circ } \right) = 135^\circ \)
Cho tứ giác ABCD có A ^ = 50 ° ; C ^ = 150 ° ; D ^ = 45 ° . Số đo góc ngoài tại đỉnh B bằng:
A. 65 °
B. 66 °
C. 130 °
D. 115 °
Đáp án cần chọn là: A
Xét tứ giác ABCD có A ^ + B ^ + C ^ + D ^ = 360 ° (định lí)
Hay 50 ° + B ^ + 150 ° + 45 ° = 360 °
⇒ B ^ = 360 ° - 50 ° - 150 ° - 45 ° = 115 °
Nên góc ngoài tại đỉnh B có số đo là 180 ° - B ^ = 180 ° - 115 ° = 65 °
Cho tứ giác ABCD có A ^ = 50 ° ; B ^ = 117 ° ; C ^ = 71 ° . Số đo góc ngoài tại đỉnh D bằng:
A. 113 °
B. 107 °
C. 73 °
D. 83 °
Đáp án cần chọn là: C
C D x ^ là góc ngoài đỉnh D.
Tứ giác ABCD có: D ^ = 360 ° - A ^ + B ^ + C ^ = 360 ° - 65 ° + 117 ° + 71 ° = 107 °
Vì A D C ^ và C D x ^ là hai góc kề bù nên
C D x ^ = 180 ° - D ^ = 180 ° - 107 ° = 73 °
b1. Tứ giác ABCD có góc C= 60*, góc D = 80*; góc A - góc B = 10*. Tính số đo góc A và B.
b2. tứ giác ABCD có góc A = 110*; góc B = 100*. Các tia phân giác của góc C và D cắt nhau ở E. Các đường phân giác của các góc ngoài tại các đỉnh C và D cắt nhau ở F. Tính CED và CFD?
Bài 1 : Bài giải
Ta có : \(\widehat{A}-\widehat{B}=10^o\text{ }\Rightarrow\text{ }\widehat{A}=\widehat{B}+10^o\)
Trong tứ giác ABCD có :
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
\(\widehat{B}+10+\widehat{B}+60^o+80^o=360^o\)
\(2\widehat{B}+150^o=360^o\)
\(2\widehat{B}=110^o\)
\(\widehat{B}=55^o\text{ }\Rightarrow\text{ }\widehat{A}=65^o\)