cho a,b,c,d >0.CMR:2<\(\frac{a+b}{a+b+c}+\frac{b+c}{b+c+d}+\frac{c+d}{c+d+a}+\frac{d+a}{d+a+b}<3\)
Câu 1 :Cho tỉ lệ thức a/b=c/d với b,c,d khác 0và c khác -d
Cmr: a+b/b=c+d/d
Câu 2: cho tỉ lệ thức a/b=c/d với b,c,d khác 0 và a khác -b,c khác -d.
Cmr: a/a+b=c/c+d
Câu 3: cho a+b/a-b=c+d/c-d(a,b,c,d khác 0 và a khác b, c khác âm dương c)
Cmr a/b=c/d
Câu 4: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0
Cmr ac/bd=a^2+c^2 /b^2+d^2
Câu 5: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 và c khác d
Cmr: (a-b)^2/(c-d)^2=ab/cd
Câu 6: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 và khác-d
Cmr: (a+b)^2014/(c+d)^2014=a^2014+b^2014/c^1014+d^2014
Câu 7:cho a/c=c/d với a,b,c khác 0
Cmr a/b=a^2+c^2/b^2+d^2
Câu 8: cho a/c=c/d với a,b,c khác 0
Cmr b-a/a=b^2-a^2/a^2+c^2
Câu 9:cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 và a khác âm dương 5/3b; khác âm dương 5/3d khác 0
Cmr: các tỉ lệ thức sau: 3a+5b/3a-5b=3c+5d/3c-5d
Câu 10: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0
Cmr: 7a^2+5ac/7b^2-5ac=7a^2+5bd/7b^2-5bd
Câu 1
Ta có : \(\frac{a}{b}=\frac{c}{d}=>\left(\frac{a}{b}+1\right)=\left(\frac{c}{d}+1\right)\left(=\right)\frac{a+b}{b}=\frac{c+d}{d}\)
=> ĐPCM
Câu 2
Ta có \(\frac{a}{b}=\frac{c}{d}=>\frac{b}{a}=\frac{d}{c}=>\left(\frac{b}{a}+1\right)=\left(\frac{d}{c}+1\right)\left(=\right)\frac{b+a}{a}=\frac{d+c}{c}=>\frac{a}{b+a}=\frac{c}{d+c}\)
=> ĐPCM
Câu 3
Câu 3
Ta có \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(=) (a+b).(c-d)=(a-b).(c+d)(=)ac-ad+bc-bd=ac+ad-bc-bd(=)-ad+bc=ad-bc(=) bc+bc=ad+ad(=)2bc=2ad(=)bc=ad=> \(\frac{a}{b}=\frac{c}{d}\)
=> ĐPCM
Câu 4
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(=>\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có \(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\left(1\right)\)
Lại có \(\frac{a^2+c^2}{b^2+d^2}=\frac{b^2k^2+c^2k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)
Từ (1) và (2) => ĐPCM
Mày là thằng anh tuấn lớp 7c trường THCS yên lập đúng ko
1/ cho a,b,c,d khác 0 sao cho a2+b2=c2+d2. CMR: a+b+c+d là hợp số
2/ cho a,b,c,d khác 0 sao cho a.b=c.d. CMR: a+b+c+d là hợp số
1.a)CMR từ tỉ lệ a/b=c/d (a khác b và -b,c khác d và -d) ta có tỉ lệ thức a+b/a-b = c+d/c-d.
b)CMR nếu có a+b/a-b = c+d/c-d (a,b,c,d khác 0) thì a/b=c/d.
a, Cho a/b = c/d . CMR : a+b/2b = c+d/2d
b, Cho a/c = c/b . CMR : a^2+c^2 / b^2+c^2 = a/b
c, Cho b^2 = ac ( a , b , c # 0 ) . CMR :
a/c = ( a + 2012b )^2 / ( c + 2012c )^2
d, Cho a/b = c/d . CMR :
5a + 3b / 5a - 3b = 5c + 3d / 5c - 3d
MỌI NGƯỜI LM ĐC CÂU NÀO THÌ LM NHA !
Cho a/b = c/d với a,b,c,d khác 0. CMR: a^2-c^2/b^2-d^2=a.c/b.d
Cho a,b,c,d >0 .CMR: a/(b+c) + b/(c+d) + c/(d+a) + d/( a+b)>=2
Áp dụng BĐT Bunhiacopxki , ta có:
Với a,b,c,d >0
\(\left(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\right)\left[a\left(b+c\right)+b\left(c+d\right)+c\left(d+a\right)+d\left(a+b\right)\right]\ge\left(a+b+c+d\right)^2\)
\(\Rightarrow\left(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\right)\ge\frac{\left(a+b+c+d\right)^2}{ab+bc+cd+da+2ca+2bd}\)
Ta cần chứng minh :
\(\left(a+b+c+d\right)^2\ge2\left(ab+bc+cd+da+2ac+2bd\right)\)
\(\Leftrightarrow a^2+b^2+c^2+d^2\ge2ca+2bd\)
\(\Leftrightarrow\left(a-c\right)^2+\left(b-d\right)^2\ge0\)(đúng)
\(\Leftrightarrow dpcm\)
Cho dãy tỉ số a/b = c/d với b, d # 0. CMR:
\(\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{a}{b}\)
Lời giải:
Đặt $\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk, c=dk$. Khi đó:
$\frac{a}{b}=\frac{bk}{b}=k(1)$
$\frac{a^2+c^2}{b^2+c^2}=\frac{(bk)^2+(dk)^2}{b^2+(dk)^2}=\frac{k^2(b^2+d^2)}{b^2+d^2k^2}(2)$
Từ $(1); (2)$ suy ra đề sai.
a, cho \(\dfrac{a}{b}=\dfrac{c}{d}\) (b,d \(\ne\)0) CMR:\(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
b,cho \(\dfrac{a}{b}=\dfrac{c}{d}\)(b,d \(\ne\)0) CMR:\(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
a: Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{k}{k-1}\)
\(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{k}{k-1}\)
Do đó: \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
b: Đặt a/b=c/d=k
=>a=bk; c=dk
\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bk+b}{dk+d}\right)^2=\dfrac{b^2}{d^2}\)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}\)
DO đó: \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
Cho a,b,c,d > 0 và abcd=1.CMR: a^2 + b^2 + c^2 + d^2 + a(b+c) + b(c+d) + d(c+a) >= 10
Áp dụng bđt Cô-si: \(a^2+b^2+c^2+d^2\)\(\ge4\sqrt[4]{a^2.b^2.c^2.d^2}\)\(=4\sqrt[4]{\left(abcd\right)^2}=4\sqrt[4]{1^2}=4;\)
\(a\left(b+c\right)+b\left(c+d\right)+d\left(c+a\right)=ab+ac+bc+bd+dc+da\)
\(\ge6\sqrt[6]{ab.ac.bc.bd.dc.da}=6\sqrt[6]{\left(abcd\right)^3}=6\sqrt[6]{1^3}=6\)
=>\(a^2+b^2+c^2+d^2\)\(a\left(b+c\right)+b\left(c+d\right)+d\left(c+a\right)\ge4+6=10\)
Dấu "=" xảy ra khi a=b=c=d=1
2/B=2^100+2^99+2^98+2^97+...+2^1+2^0 CMR(B+2^101)CHIA HẾT CHO 3
3/A=7^0+7^1+7^2+7^3+...+7^2013
A/THU GỌN A
B/CMR Ax6+2015^0+7^2014
C/CMR A CHIA HẾT CHO 8
4/C=3^1+3^3+3^5+3^7+...+3^2013
A/THU GỌN C
B/CMR Cx8+3=3^2015
C/(C+3^2015)CHIA HẾT CHO 10
5/D=8^0+8^1+8^2+8^3+...+8^211
A/THU GỌN D
B/CMR 7xD+9876543210^0=8^2012
C/CMR D CHIA HẾT CHO 9
6/
A/VẼ HÌNH THEO CÁC CÁCH DIỄN ĐẠT SAU.LẤY 4 ĐIỂM A,B,C,D TRONG ĐÓ B NẰM GIỮA A VÀ C CÒN D NẰM NGOÀI ĐƯỜNG THẲNG AC.KẺ CÁC ĐƯỜNG THẲNG ĐI QUA 2 TRONG 4 ĐIỂM A,B,C,D
B/CÓ BAO NHIÊU ĐƯỜNG THẲNG PHÂN BIỆT TRONG HINHG VỮ.VIẾT TÊN CÁC ĐƯỜNG THẲNG ĐÓ
Câu 2;3;4 dễ quá... bỏ qua!!
Câu 5;6 khó quá ... khỏi làm!!
dễ quá bỏ qua!!, khó quá khỏi làm!!
cứ tiêu chí mày bạn sẽ vượt qua mọi bài toán... và nhanh chóng đạt 1đ.