1.a)CMR từ tỉ lệ a/b=c/d (a khác b và -b,c khác d và -d) ta có tỉ lệ thức a+b/a-b = c+d/c-d.
b)CMR nếu có a+b/a-b = c+d/c-d (a,b,c,d khác 0) thì a/b=c/d.
1.a)CMR từ tỉ lệ a/b=c/d (a khác b và -b,c khác d và -d) ta có tỉ lệ thức a+b/a-b = c+d/c-d.
b)CMR nếu có a+b/a-b = c+d/c-d (a,b,c,d khác 0) thì a/b=c/d.
Cho a, b, c, d là 4 số khác 0 thỏa mãn \(b^2\) = ac; \(c^2\) = bd và \(b^3+c^3+d^3\ne0\)
Chứng minh rằng: \(\dfrac{a}{d}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\left(\dfrac{a+b+c}{b+c+d}\right)^3\)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\)và b, d khác 0. CMR \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)
Bài1:CMR từ tỉ lệ thức a/b=c/d suy ra tỉ lệ thức 5a+4b/5a-4b=5c+4d/5c-4d
Bài 2: a)CMR nếu a/b=c/d thì a^2+b^2/b^2+c^2=a/c b)Nếu a/b=b/c=c/d thì(a+b-c/b+c-d)^3=a/d
Cho b^2=ac; c^2=bd với b,c,d khác 0; b+c khác d, b^3+c^3 khác d^3Chứng mỉnh rằng a/b=b/c=c/d và 3a^3-4b^3+5c^3/3b^3-4c^3+5d^3=a/d
giúp ;-;
Bài 1 Cho \(\dfrac{a+b+c}{a+b-c}=\dfrac{a-b+c}{a-b-c}\left(b\ne0\right)\) CMR \(c=0\)
Bài 2 Cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}CMR\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)
Chứng minh rằng từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) (b, d ≠ 0) ta suy ra được các tỉ lệ thức:
a/ \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
b/ \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
c/ \(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)
d/ \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{ac}{bd}\)
e/ \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{a^2-c^2}{b^2-d^2}\)
f/ \(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{a^2+b^2}{c^2+d^2}\)
a) Cho tỉ lệ thức a/b=c/d Với b/d khác +-3/2 . Chứng minh:
1)2a+3c/2b+3d=2a-3c/2b-3d.
2)a^2+c^2/b^2+d^2=ac/bd
cho tỉ lệ thức:\(\dfrac{a+b+c}{a+b-c}=\dfrac{a-b+c}{a-b-c}\)trong dó b khác 0.cmr : c=0
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\)
CMR \(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\) và \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)