A =2x+3/x-1
a, x-3/4+2x-1/3=-x/6
b,(x-3)(2x-1)=(2x-1)(2x+3)
c,6/x-1-4/x-3+8/x^2-4x+3=0
\(a,\dfrac{x-3}{4}+\dfrac{2x-1}{3}=-\dfrac{x}{6}\)
\(\Leftrightarrow\dfrac{3\left(x-3\right)+4\left(2x-1\right)+2x}{12}=0\)
\(\Leftrightarrow3x-9+8x-4+2x=0\)
\(\Leftrightarrow13x-13=0\)
\(\Leftrightarrow13x=13\)
\(\Leftrightarrow x=1\)
\(b,\left(x-3\right)\left(2x-1\right)=\left(2x-1\right)\left(2x+3\right)\)
\(\Leftrightarrow\left(x-3\right)\left(2x-1\right)-\left(2x-1\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-3-2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\-x-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-6\end{matrix}\right.\)
a, x-3/4+2x-1/3=-x/6
b,(x-3)(2x-1)=(2x-1)(2x+3)
c,6/x-1-4/x-3+8/x^2-4x+3=0
cho A=1+((2x^2+x-1/1-x)-(2x^3-x+x^2/1-x^3):2x-1/x^2-x) a)Hãy rút gọn A b)tính x để A=5 c)cmr:A>2/3
a. 2x-3= 4x + 6
b. x + 2/4 - x + 3 - 1 - x/8 = 0
c.x(x - 1) + x(x + 3) + 0
d. x/ 2x -6- x/2x +2 = 2x/(x+1) (x-3)
a 2x-3=4x+6
(=) 2x-4x=6+3
(=)-2x=9
(=)x=-\(\dfrac{9}{2}\)
c: =>x(x-1+x+3)=0
=>x(2x+2)=0
=>x=-1 hoặc x=0
d: =>x(x+1)-x(x-3)=4x
=>x^2+x-x^2+3x=4x
=>4x=4x(luôn đúng)
a) x-1/x+1/x+1=2x-1/x^2+x
b) 5/x-3-2x-3/x+3=2x(1-x)/x^2-9
a)ĐKXĐ: \(x\notin\left\{0;-1\right\}\)
Ta có: \(\dfrac{x-1}{x}+\dfrac{1}{x+1}=\dfrac{2x-1}{x^2+x}\)
\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x+1\right)}{x\left(x+1\right)}+\dfrac{x}{x\left(x+1\right)}=\dfrac{2x-1}{x\left(x+1\right)}\)
Suy ra: \(x^2-1+x-2x+1=0\)
\(\Leftrightarrow x^2-x=0\)
\(\Leftrightarrow x\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=1\left(nhận\right)\end{matrix}\right.\)
Vậy: S={1}
b) ĐKXĐ: \(x\notin\left\{3;-3\right\}\)
Ta có: \(\dfrac{5}{x-3}-\dfrac{2x-3}{x+3}=\dfrac{2x\left(1-x\right)}{x^2-9}\)
\(\Leftrightarrow\dfrac{5\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{\left(2x-3\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{2x\left(1-x\right)}{\left(x-3\right)\left(x+3\right)}\)
Suy ra: \(5x+15-2x^2+6x+3x-9-2x+2x^2=0\)
\(\Leftrightarrow12x+6=0\)
\(\Leftrightarrow12x=-6\)
hay \(x=-\dfrac{1}{2}\)(thỏa ĐK)
Vậy: \(S=\left\{-\dfrac{1}{2}\right\}\)
Bài 1 : Tìm thương Q và dư R sao cho A= B.Q+R biết ;
a) A = \(x^4+3x^3+2x^2-x-4\) và B = \(x^2-2x+3\)
b) A = \(2x^3-3x^2+6x-4\) và B = \(x^2-x+3\)
c) A = \(2x^4+x^3+3x^2+4x+9\) và B = \(x^2+1\)
d) A = \(2x^3-11x^2+19x-6\) và B = \(x^2-3x+1\)
c) A= \(2x^4-x^3-x^2-x+1\) và B = \(x^2+1\)
a/\(\dfrac{1-x}{x+1}+3=\dfrac{2x+3}{x+1}\)
b/\(\dfrac{\left(x+2\right)^2}{2x-3}-1=\dfrac{x^2+10}{2x-3}\)
c/\(\dfrac{5x-2}{2-2x}+\dfrac{2x-1}{2}=1-\dfrac{x^2+x-3}{1-x}\)
đk: \(_{x+1\ne0\Leftrightarrow x\ne-1}\)\(\dfrac{1-x}{x+1}+3=\dfrac{2x-3}{x+1}\Leftrightarrow\dfrac{1-x}{x+1}+\dfrac{3\left(x+1\right)}{x+1}=\dfrac{2x+3}{x-1}\Leftrightarrow1-x+3x+3-2x-3=0\Leftrightarrow-2x+1=0\Leftrightarrow-2x=-1\Leftrightarrow x=0,5\)
1. Phân tích đa thức thành nhân tử:
a. (ab-1)^2+(a+b)^2
b. x^3+2x^2+2x+1
c. x^3-sx^2+12x-27
d. x64-2x^3+2x-1
e. x^4+2x^3+2x^2+2x+1
f. x^2-2x-4y^2-4y
g. x^4+2x^3-4x-4
h. x^2(1-x^2)-4-4x^2
i. (1+2x)(1-2x)-x(x+2)(x-2)
j. x^2+y^2-x^2.y^2+xy-x-y
2.Phân tích đa thức thành nhân tử:
a. a(b^2+c^2+bc)+b(c^2+a^2+ac)+c(a^2+b^2+ab)
b.(a+b+c)(ab+bc+ca)-abc
c. a(a+2b)^3-b(2a+b)^3
Tính
a.1/2xy^2 (x^2-6y)
b.(x-2)(2x+3)
c.(x+5)(x^2-2x +3)
d.(2x-3)(x^2-2Tính
a.1/2xy^2 (x^2-6y)
b.(x-2)(2x+3)
c.(x+5)(x^2-2x +3)
d.(2x-3)(x^2-2x+5)
e.(x-2y)(x+2y)
f.(2x-1)(4x^2+2x+1)
g.(2x-1)(4x^2-2x+1)x+5)
e.(x-2y)(x+2y)
f.(2x-1)(4x^2+2x+1)
g.(2x-1)(4x^2-2x+1)
Mọi người giúp tới gấp nhé:
1. Tìm x, biết:
a/ 3(2x - 3) + 2(2 - x) = -3
b/ 2x(x2 - 2) + x2(1 - 2x) - x2 = -12
2. Tìm x, biết:
a/ 3x(2x + 3) - (2x + 5)(3x - 2) = 8
b/ 4x(x - 1) - 3(x2 - 5) - x2 = (x - 3) - (x + 4)
c/ 2(3x - 1)(2x + 5) - 6(2x - 1)(x + 2) = -6
d/ 3(2x - 1)(3x - 1) - (2x - 3)(9x -1) - 3 = -3
e/ (3x - 1)(2x + 7) - (x + 1)(6x - 5) = (x + 2) - (x - 5)
f/ 3xy(x + y) - (x + y)(x2 + y2 + 2xy) + y3 = 27
3. Chứng minh rằng giá trị của các biểu thức sau không phụ thuộc vào x:
a/ A = 2x(x - 1) - x(2x + 1) - (3 - 3x)
b/ B = 2x(x - 3) - (2x - 2)(x - 2)
c/ C = (3x - 5)(2x + 11) - (2x + 3)(3x + 7)
d/ D = (2x + 11)(3x - 5) - (2x + 3)(3x + 7)
f/ \(3xy\left(x+y\right)-\left(x+y\right)\left(x^2+y^2+2xy\right)+y^3=27\)
\(3x^2y+3xy^2-\left(x+y\right)\left(x+y\right)^2+y^3=27\)
\(3x^2y+3xy^3-\left(x+y\right)^3+y^3=27\)
\(3x^2y+3xy^3-\left(x^3+3x^2y+3xy^2+b^3\right)+y^3=27\)
\(-x^3=27\)
\(x=-3\)
Bài 1:
a/ \(3\left(2x-3\right)+2\left(2-x\right)=-3\)
\(6x-9+4-2x=-3\)
\(4x=-2\)
\(x=-\frac{1}{2}\)
b/ \(2x\left(x^2-2\right)+x^2\left(1-2x\right)-x^2=-12\)
\(2x^3-4x+x^2-2x^3-x^2=-12\)
\(-4x=-12\)
\(x=\frac{1}{3}\)
Bài 2:
a/ \(3x\left(2x+3\right)-\left(2x+5\right)\left(3x-2\right)=8\)
\(6x^2+9x-6x^2-15x+4x+10=8\)
\(-2x=8\)
\(x=-4\)
b/ \(4x\left(x-1\right)-3\left(x^2-5\right)-x^2=\left(x-3\right)-\left(x+4\right)\)
\(4x^2-4x-3x^2+15-x^2=-7\)
\(-4x=-22\)
\(x=\frac{11}{2}\)
c/ \(2\left(3x-1\right)\left(2x+5\right)-6\left(2x-1\right)\left(x+2\right)=-6\)
\(6x-2\left(2x+5\right)-12x+6\left(x+2\right)=-6\)
\(6x-4x-10-12x+6x+12=-6\)
\(-4x=-8\)
\(x=2\)