Nghiệm của hệ phương trình x + y = 2 x 2 + y 2 = 10 là:
A. (−1; 3).
B. (−1; 3) hoặc (3; −1)
C. (3; −1).
D. (1; −3) hoặc (−3; 1)
Cho hệ phương trình ( x+y = 2 mx−y = m với m là tham số.
a) Giải hệ phương trình khi m = −2.
b) Tìm giá trị của m để hệ phương trình có nghiệm duy nhất (x; y) sao cho 3x−y = −10.
c) Tìm giá trị nguyên của m để hệ phương trình có nghiệm (x; y) mà x, y là những số nguyên
a) Với m = -2
=> hpt trở thành: \(\left\{{}\begin{matrix}x+y=2\\-2x-y=-2\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}y=2-x\\-x=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)
Vậy S = {0; 2}
b) Ta có: \(\left\{{}\begin{matrix}x+y=2\left(1\right)\\mx-y=m\left(2\right)\end{matrix}\right.\)
=> x + mx = 2 + m
<=> x(m + 1) = 2 + m
Để hpt có nghiệm duy nhất <=> \(m\ne-1\)
<=> x = \(\dfrac{m+2}{m+1}\) thay vào pt (1)
=> y = \(2-\dfrac{m+2}{m+1}=\dfrac{2m+2-m-2}{m+1}=\dfrac{m}{m+1}\)
Mà 3x - y = -10
=> \(3\cdot\dfrac{m+2}{m+1}-\dfrac{m}{m+1}=-10\)
<=> \(\dfrac{2m+6}{m+1}=-10\) <=> m + 3 = -5(m + 1)
<=> 6m = -8
<=> m = -4/3
c) Để hpt có nghiệm <=> m \(\ne\)-1
Do x;y \(\in\) Z <=> \(\left\{{}\begin{matrix}\dfrac{m+2}{m+1}\in Z\\\dfrac{m}{m+1}\in Z\end{matrix}\right.\)
Ta có: \(x=\dfrac{m+2}{m+1}=1+\dfrac{1}{m+1}\)
Để x nguyên <=> 1 \(⋮\)m + 1
<=> m +1 \(\in\)Ư(1) = {1; -1}
<=> m \(\in\) {0; -2}
Thay vào y :
với m = 0 => y = \(\dfrac{0}{0+1}=0\)(tm)
m = -2 => y = \(\dfrac{-2}{-2+1}=2\)(tm)
Vậy ....
Cho hệ phương trình: a2x + y = 1 và x + y = a
a, giải hệ phương trình với a = -2
b, tìm các giá trị của a để hệ phương trình có vô số nghiệm
c, tìm a để hệ phương trình có nghiệm duy nhất (x,y) thỏa mãn x,y đều nguyên
Bài tập 1 Cho hệ phương trình
(1)
1. Giải hệ phương trình (1) khi m = 3 .
2. Tìm m để hệ phương trình có nghiệm x =
và y =
.
3. Tìm nghiệm của hệ phương trình (1) theo m.
Cho hệ phương trình 4 x - 3 y = 4 2 x + y = 2 . Biết nghiệm của hệ phương trình (x; y) , tính x.y
A. 2
B. 0
C. -2
D. 1
Cho hệ phương trình 4 x - 3 y = 4 2 x + y = 2 . Biết nghiệm của hệ phương trình (x; y) , tính x.y
A. 2
B. 0
C. -2
D. 1
Cho hệ phương trình : x + a y = 3 a x - y = 2
c) Tìm giá trị của a để hệ phương trình có nghiệm (x; y) thỏa mãn x = 2 y
c) Hệ phương trình đã cho có nghiệm

Theo đề bài : x= y

Vậy với
thì hệ phương trình có nghiệm (x; y) thỏa mãn x =
2
y
Cho hệ phương trình 4 x − 3 y = 4 2 x + y = 2 . Biết nghiệm của hệ phương trình là (x; y), tính x.y
A. 2
B. 0
C. −2
D. 1
ĐK: x ≥ 0; y ≥ 0
Ta có
4 x − 3 y = 4 2 x + y = 2 ⇔ 4 x − 3 y = 4 4 x + 2 y = 4 ⇔ 5 y = 0 2 x + y = 2 ⇔ y = 0 2 x = 2
⇔ y = 0 x = 1 (Thỏa mãn)
Vậy hệ phương trình có 1 nghiệm duy nhất (x; y) = (1; 0) ⇒ x.y = 0
Đáp án: B
Cho hệ phương trình 5 x 3 + y = 2 2 x 6 − y 2 = 2 . Biết nghiệm của hệ phương trình là (x; y), tính 6 x + 3 3 y
A. 6 2
B. 5 6 2
C. − 6 2
D. 6
Nhân hai vế của phương trình thứ nhất với 2 rồi cộng từng vế của hai phương trình
5 x 3 + y = 2 2 x 6 − y 2 = 2 ⇔ 5 x 6 + y 2 = 4 x 6 − y 2 = 2 ⇔ 6 x 6 = 6 x 6 − y 2 = 2 ⇔ x = 1 6 1 6 . 6 − y 2 = 2 ⇔ x = 1 6 y = − 1 2
Vậy hệ đã cho có nghiệm duy nhất ( x ; y ) = 6 6 ; − 2 2
⇒ 6 x + 3 3 y = 6. 6 6 + 3. 3 . − 2 2 = 6 − 3 2 6 = − 6 2
Đáp án: C
Cho hệ phương trình: \(\hept{\begin{cases}kx-y=5\\x+y=1\end{cases}}\)
a/Với giá trị nào của k thì hệ phương trình có nghiệm là \(\left(x;y\right)=\left(2;-1\right)\)
b/Với giá trị nào của k thì hệ phương trình có nghiệm duy nhất?hệ phương trình vô nghiệm?
a) Ta có hệ phương trình \(\hept{\begin{cases}kx-y=5\\x+y=1\end{cases}}\) Thay nghiệm \(\left(x,y\right)=\left(2,-1\right)\) ta có hệ mới là :
\(\hept{\begin{cases}2k-1=5\\2-1=1\end{cases}\Leftrightarrow k=3}\)
b) Ta có : \(\hept{\begin{cases}kx-y=5\\x+y=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=1-x\\kx-1-x=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=1-x\\x\left(k-1\right)=6\end{cases}}\)
Để hệ phương trình có nghiệm duy nhất : \(\Leftrightarrow k-1\ne0\) \(\Leftrightarrow k\ne1\)
Để hệ phương trình vô nghiệm \(\Leftrightarrow k-1=0\Leftrightarrow k=1\)
P/s : Em chưa học lớp 9 nên không biết cách trình bày cho lắm :))
Cho hệ phương trình sau: x+y=2,mx-y=1 b) Tìm m để hệ phương trình có nghiệm duy nhất (x;y) c) Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x-3y=5 d) Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn xy < 0 e) Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn x+2y > 4 f) Tìm các giá trị của m để x;y là giá trị nguyên
b: Để hệ có nghiệm duy nhất thì \(\frac{1}{m}<>\frac{1}{-1}\)
=>m<>-1
c: Để hệ có nghiệm duy nhất thì m<>-1
\(\begin{cases}x+y=2\\ mx-y=1\end{cases}\Rightarrow\begin{cases}x+y+mx-y=2+1=3\\ x+y=2\end{cases}\)
=>\(\begin{cases}x\left(m+1\right)=3\\ x+y=2\end{cases}\Rightarrow\begin{cases}x=\frac{3}{m+1}\\ y=2-x=2-\frac{3}{m+1}=\frac{2m+2-3}{m+1}=\frac{2m-1}{m+1}\end{cases}\)
x-3y=5
=>\(\frac{3}{m+1}-\frac{3\left(2m-1\right)}{m+1}=5\)
=>3-3(2m-1)=5(m+1)
=>3-6m+3=5m+5
=>-6m+6=5m+5
=>-11m=-1
=>\(m=\frac{1}{11}\) (nhận)
d: xy<0
=>\(\frac{3}{m+1}\cdot\frac{2m-1}{m+1}<0\)
=>3(2m-1)<0
=>2m-1<0
=>\(m<\frac12\)
Kết hợp với m<>-1, ta được: \(\begin{cases}m<\frac12\\ m<>-1\end{cases}\)
e: x+2y>4
=>\(\frac{3}{m+1}+\frac{2\left(2m-1\right)}{m+1}>4\)
=>3+2(2m-1)>4(m+1)
=>3+4m-2>4m+4
=>1>4(sai)
=>m∈∅
f: Để x,y nguyên thì 3⋮m+1 và 2m-1⋮m+1
=>3⋮m+1 và 2m+2-3⋮m+1
=>3⋮m+1 và -3⋮m+1
=>3⋮m+1
=>m+1∈{1;-1;3;-3}
=>m∈{0;-2;2;-4}