Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Thị Duyên
Xem chi tiết
Lê Chí Cường
Xem chi tiết
Thắng Nguyễn
28 tháng 11 2016 lúc 21:27

Áp dụng BĐT AM-GM ta có:

\(\frac{x^4}{y+3z}+\frac{y+3z}{16}+\frac{1}{4}+\frac{1}{4}\ge4\sqrt[4]{\frac{x^4}{y+3z}\cdot\frac{y+3z}{16}\cdot\frac{1}{4}\cdot\frac{1}{4}}=x\)

\(\Rightarrow\frac{x^4}{y+3z}\ge x-\frac{y+3z}{16}-\frac{1}{2}\).Tương tự ta có:

\(\frac{y^4}{z+3x}\ge y-\frac{z+3x}{16}-\frac{1}{2};\frac{z^4}{x+3y}\ge z-\frac{x+3y}{16}-\frac{1}{2}\)

Cộng theo vế ta có:

\(P\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{2}\ge\frac{3}{4}\cdot3-\frac{3}{2}=\frac{3}{4}\)

Dấu "=" khi x=y=z=1

Phú Lê Hoàng
28 tháng 11 2016 lúc 21:53

xin cho mình hỏi sao x+y+z lại\(\ge\)xy+yz+zx vậy

Lê Chí Cường
28 tháng 11 2016 lúc 22:07

Áp dụng bất đẳng thức AM-GM, ta có: \(a^2+b^2+c^2\ge ab+bc+ca\)

<=>\(a^2+b^2+c^2+2ab+2bc+2ca\ge3\left(ab+bc+ca\right)\)

<=>\(\left(a+b+c\right)^2\ge9\)

<=>\(a+b+c\ge3\)

Hà Khanh Việt Hoàng
Xem chi tiết
Phạm Quốc Cường
10 tháng 9 2018 lúc 21:08

Ta có: \(P=x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\ge\frac{\left(xy+yz+zx\right)^2}{3}=\frac{2006^2}{3}\)

Hà Khanh Việt Hoàng
10 tháng 9 2018 lúc 21:12

trả lời rõ ra đc k bạn nếu đc thì thank bạn nhìu nha

Phạm Quốc Cường
10 tháng 9 2018 lúc 21:17

Áp dụng BĐT phụ:  \(a^2+b^2+c^2\ge ab+bc+ca\)  và \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\) 

Ta có: \(x^4+y^4+z^4=\left(x^2\right)^2+\left(y^2\right)^2+\left(z^2\right)^2\ge x^2y^2+y^2z^2+z^2x^2\ge\frac{\left(xy+yz+zx\right)^2}{3}=\frac{2006^2}{3}\) 

Dấu "=" khi \(x=y=z=\sqrt{\frac{2006}{3}}\)

dinh huong
Xem chi tiết
Nguyễn Quỳnh Chi
Xem chi tiết
Đặng Tiến
27 tháng 7 2016 lúc 18:57

Ta có đẳng thức:

\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)

\(A=x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\ge\frac{\left(xy+yz+zx\right)^2}{3}=\frac{1}{3}\)

\(\Rightarrow Min_A=\frac{1}{3}\)khi \(x=y=z=\frac{1}{\sqrt{3}}\)

hoặc bạn áp dụng hệ thức holder á

Đặng Tiến
27 tháng 7 2016 lúc 19:03

Ta có:

\(x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\)

Mặt khác:

\(\left(xy+yz+zx\right)^2=1\le3\left(x^2y^2+y^2z^2+z^2x^2\right)\)

\(\Rightarrow\frac{1}{3}\le\left(x^2y^2+y^2z^2+z^2x^2\right)\)

hay \(x^4+y^4+z^4\ge\frac{1}{3}\Rightarrow A\ge\frac{1}{3}\)

Vậy \(Min_A=\frac{1}{3}\)khi \(x=y=z=\frac{1}{\sqrt{3}}\)

Bùi Hữu Vinh
Xem chi tiết
Yen Nhi
5 tháng 1 2021 lúc 23:17
Bạn tham khảo lời giải của tớ nha!

Bài tập Tất cả

Khách vãng lai đã xóa
Họ Và Tên
Xem chi tiết
Etermintrude💫
21 tháng 5 2021 lúc 14:53

undefined

buiduytrung
Xem chi tiết
Mai Thị Hồng Kim
Xem chi tiết