Giải HPT :
\(\int^{x^2+y^2+\frac{2xy}{x+y}=1}_{\sqrt{x+y}=x^2-y}\)
\(\int^{\left(x-1\right)^2+y^2=\sqrt[3]{x\left(2x+1\right)}}_{3x^2-x+\frac{1}{2}=y\sqrt{x^2+x}}\) giải hpt.............
giải hpt:
\(\hept{\begin{cases}x+\frac{2xy}{\sqrt[3]{x^2-2x+9}}=x^2+y\\y+\frac{2xy}{\sqrt[3]{y^2-2y+9}}=y^2+x\end{cases}}\)
EZ game
Xét x=y=0
Xét x và y khác 0
Cộng từng vế hai phương trình
Đánh giá VP >= VT
Giải hpt :
\(\hept{\frac{\sqrt{\frac{x^2+y^2}{2}}+\sqrt{\frac{x^2+xy+y^2}{3}}=x+y}{x\sqrt{2xy+5x+3}=4xy-5x-3}}\)
giải hpt \(\int^{\frac{x}{y}-\frac{x}{y+12}=1}_{\frac{x}{y-12}-\frac{x}{y}=2}\)
\(\int^{x\left(\frac{1}{y}-\frac{1}{y+12}\right)=1}_{x\left(\frac{1}{y-12}-\frac{1}{y}\right)=2}\Leftrightarrow\int^{\frac{1}{y}-\frac{1}{y+12}=\frac{1}{x}}_{\frac{1}{y-12}-\frac{1}{y}=\frac{2}{x}}\Leftrightarrow\int^{\frac{2}{y}-\frac{2}{y+12}=\frac{2}{x}\left(1\right)}_{\frac{1}{y-12}-\frac{1}{y}=\frac{2}{x}\left(2\right)}\)
Lấy vế trừ vế của pt (1) và (2) ta có
\(\frac{2}{y}-\frac{2}{y+12}-\frac{1}{y-12}+\frac{1}{y}=0\)
\(\Leftrightarrow\frac{3}{y}-\frac{2}{y+12}-\frac{1}{y-12}=0\Leftrightarrow3\left(y+12\right)\left(y-12\right)-2y\left(y-12\right)-y\left(y+12\right)=0\)
Rút gọn giải pt bậc 2 sau thay trở lại tìm x
Giải hpt :
\(\int^{\frac{x^2}{\left(y+1\right)^2}+\frac{y^2}{\left(x+1\right)^2}=\frac{1}{2}}_{3xy=x+y+1}\)
\(\frac{x^2}{\left(y+1\right)^2}+\frac{y^2}{\left(x+1\right)^2}=\frac{1}{2}\Leftrightarrow\left(\frac{x}{y+1}+\frac{y}{x+1}\right)^2=\frac{1}{2}+\frac{2xy}{xy+x+y+1}\)
\(\Leftrightarrow\left(\frac{x^2+x+y^2+y}{xy+x+y+1}\right)^2=\frac{1}{2}+\frac{2xy}{4xy}\)
\(\Leftrightarrow\left(\frac{\left(x+y\right)^2-2xy+\left(x+y\right)}{4xy}\right)^2=1\)
\(\Leftrightarrow\left(\frac{\left(3xy-1\right)^2+xy-1}{4xy}\right)^2=1\)
Đặt s=x+y;p=xy (s2\(\ge\)4p)
Suy ra: \(\left(\frac{\left(3p-1\right)^2+p-1}{4p}\right)^2=1\)
=>\(\frac{9p^2-5p}{4p}=1\)hoặc \(\frac{9p^2-5p}{4p}=-1\)
<=>p=1 hoặc p=1/9
Với p=1 thì: 3=s+1=>s=2 (thỏa dk)
=>nghiệm của hpt là nghiệm của pt: X2-2X+1=0
=>x=1
Vậy hpt có 1 nghiệm là: (1;1)
Với p=1/9=>s=-2/3 (thỏa dk)
Giải như trên òi kết luận
a)\(\int^{\frac{x}{y}-\frac{x}{y+12}=1}_{\frac{x}{y-12}-\frac{x}{y}=2}\)
b)\(\int^{4\left(x+y\right)=5\left(x-y\right)}_{\frac{40}{x+y}+\frac{40}{x-y}=9}\)
Giải các hpt
trừ 2 về đi bạn , cả 2 câu đều k khó đâu
a)x=144 , y=36
b)x=9 , y=1
cần lời giải thì nói mình
GIẢI hpt:
\(a,\hept{\begin{cases}\frac{1}{\sqrt{x}}+\sqrt{2.\frac{1}{y}}=2\\\frac{1}{\sqrt{y}}+\sqrt{2.\frac{1}{x}}=2\end{cases}}\)
\(b,\hept{\begin{cases}x+y+2=4\\2xy-x^2=16\end{cases}}\)
\(c,\hept{\begin{cases}x\left(x-1\right)\left(x-2y\right)=0\\\frac{1}{x}-\frac{1}{y}=\frac{4}{3}\end{cases}}\)
giải hpt:
\(\left\{{}\begin{matrix}x^2+y^2+\dfrac{2xy}{x+y}=1\\\sqrt{x+y}=x^2-y\end{matrix}\right.\)
Giải HPT
\(\int^{\sqrt{x}+\sqrt{2y-x}=2\sqrt{y}}_{\sqrt[3]{y}+\sqrt{2-x}=2}\)
ĐK 0 <= x <= 2 ; y >= 0
(1) => \(x+2y-x+2\sqrt{x\left(2y-x\right)}=4y\)
<=> \(2\sqrt{2xy-x^2}=2y\Leftrightarrow2xy-x^2=y^2\Leftrightarrow y^2-2xy+x^2=0\Leftrightarrow y=x\)
Với y = x thay vào (2) ta có :
\(\sqrt[3]{y}+\sqrt{2-y}=2\)