Cho A=n^2+n+1. Chứng minh rằng: A ko chia hết cho 2.
giúp vứi nhaaaa!!!
chứng minh rằng mọi số tự nhiên n thì tích:
a) (n+1).(n+2) chia hết cho 2
b) (n+1).(n+5) ko chia hết cho 2
Giúp vứi mn ới! đúng tui tick cho nè!!!!
a/
(n+1) và (n+2) là hai số TN liên tiếp nên chắc chắn 1 trong 2 số phải là số chẵn nên tích chia hết cho 2
b/
+ Nếu n chẵn => n+1 và n+5 lẻ => tích của chúng lẻ không chia hết cho 2
+ Nếu n lẻ => n+1 và n+5 chẵn => tích của chúng chẵn nên chia hết cho 2
=> (n+1)(n+5) chia hết cho 2 với mọi n lẻ
giải giúp mik với
chọn n thuộc N. Chứng minh rằng
a) 5^2 - 1 chia hết cho 4
b) n^2 + n +1 ko chia hết cho 4
c) 10^2 -1 chia hết cho 9
cảm ơn trước nha
chứng minh rằng a,
A = n^2 +n +1 ko chia hết cho 9
b, B=n^2 + 3n - 5 ko chia hết cho 21
Chứng minh rằng: A=n2+n+1 ko chia hết cho 2 và 5,∀ n∈N
n 2+n+1 = n(n + 1) +1.
Vì n(n+1) là tích của hai số tự nhiên liên tiếp nên có chữ số tận cùng là 0, 2, 6
Do đó n(n+1) + 1 có chữ số tận cùng là 1, 3, 7.
Vì 1, 3, 7 không chia hết cho 2 và 5 nên n(n+1) + 1 không chia hết cho 2 và 5
Vậy n 2+n+1 không chia hết cho 2 và 5
a) n2+n+1=n(n+1)+1
Ta có n(n+1)⋮2vì n(n+1)n(n+1)là tích 2 số TN liên tiếp . Do đó n(n+1)+1không chia hết cho 2
- n2+n+1=n(n+1)+1
Ta có n(n+1)l là tích của 2 số TN liên tiếp nên tận cùng bằng 0,2,6 . Suy ra n(n+1)tận cùng bằng 1,3,7 không chia hết cho 5
tham khao
https://olm.vn/hoi-dap/detail/93364253.html
Bài 1: Chứng minh rằng : 22 + n+2 chia hết cho 2 và không chia hết cho 5
Bài 2 : Cho a€ N* , n€ N* , biết a2 chia hết cho 5 . Chứng minh rằng : a2 +150 chia hết cho 25
Mình đang cần gấp mong các bạn giải nhanh giúp mình.
Bài tập:
a) Chứng tỏ rằng ab(a+b) chia hết cho 2 (a,b thuộc N)
b) Chứng minh rằng ab+ba chia hết cho 11(ko phải a nhân b, b nhân a nhé)
c) Chứng minh aaa (ko phải a.a.a nhé) luôn chia hết cho 37
d) Chứng minh aaabbb(ko phải a.a.a.b.b.b nhe) luôn chia hết cho 37
e) Chứng minh ab-ba chia hết cho 9 với a>b (ko phải a.b-b.a nhé)
chứng minh rằng
a) n.(n+3) chia hết cho 2
b) n2 +n+1 ko chia hết cho 5
a) Nếu n lẻ => lẻ ( lẻ + lẻ) = lẻ (chẵn) => tích chẵn
Nếu n chẵn => chẵn (chẵn + lẻ) => Tích chẵn
a) + Nếu n lẻ => n+3 = chẵn => n(n+3) = chẵn => n(n+3) chia hết cho 2
+ Nếu n chẵn => n(n+3) chẵn => n(n+3) chia hết cho 2
b) n^2 + n + 1 = n.n+n+1 = n(n+1)+1
Ta thấy: n(n+1) là tích của 2 số tự nhiên liên tiếp
=> n(n+1) có tận cùng là: 0;2;6
=> n(n+1)+1 có tận cùng là: 1;3;7 không chia hết cho 5
=> n^2 + n + 1 ko chia hết cho 5
\(a.n.\left(n+3\right)⋮2\)
*Với n = 2k , ta có :
\(n.\left(n+3\right)=2k.\left(2k+3\right)⋮2\)(1)
*Với n = 2k+1 ta có :
\(n.\left(n+3\right)=2k+1\left(2k+1+3\right)\)
\(=2k+1\left(2k+4\right)\)
\(=\left(2k+1.2k+4\right)\)
\(=2k\left(1+1.1+4\right)⋮2\)(2)
Từ (1) và (2) => \(n.\left(n+3\right)⋮2\)
Cho m,n,t là ba số nguyên tố lớn hơn 3 thoả mãn: m - n = n - t = a ( a ϵ N* ). Chứng minh rằng a chia hết cho 6.
Ai nhanh và đúng tick nhaaaa
Bài 1 Cho biết 3a+2bchi hết cho 17 ( a,b thuộc N ) . Chứng minh rằng 10a + b chia hết cho 17
Bài 2 Cho biết a - 5b chia hết cho 17 ( a,b thuộc N) Chứng minh rằng 10a + b chia hết cho 17
Bài 3 a) Chứng minh rằng Nếu 3x + 5y chia hết cho 7 thì x + 4y chia hết cho 7 ( x,y thuộc N). Điều ngược lại có đúng ko?
b)Chứng minh rằng 2x + 3ychia hết cho 17 thì 9x + 5y chia hết cho 17 (x,y thuộc N). Điều ngược lại có đúng ko?