Xác định P y=ax²+bx+3 biết P đi qua điểm A(1,0) có tung độ đỉnh bằng -1
Xác định hàm số y=ax2+bx+2 biết (P) đi qua B(-1;6) và có tung độ đỉnh là -1/4
xác định hàm số bậc 2 có đồ thị là parabol (p) biết : a, (P) : y= ax^2 + bx + c có giá trị nhỏ nhất = -1 biết (p) đi qua điểm A( -1 ; 7) và (P) cắt Oy tại điểm có tung độ bằng 1
Từ điều kiện đề bài: (hiển nhiên a khác 0):
\(\left\{{}\begin{matrix}\dfrac{4ac-b^2}{4a}=-1\\a-b+c=7\\c=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}4a-b^2=-4a\\a-b=6\\c=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-6\right)^2-8a=0\\b=a-6\\c=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\left\{2;18\right\}\\b=a-6\\c=1\end{matrix}\right.\)
Có 2 parabol thỏa mãn: \(\left[{}\begin{matrix}y=2x^2-4x+1\\y=18x^2+12x+1\end{matrix}\right.\)
Biết rằng (P) : y=ax^2 + bx +2 (a>1) đi qua điểm M(-1;6) và có tung độ đỉnh bằng -1/4. Tính tích T=ab
Xác định parabol (P) biết:
a)\(\left(P\right):y=ãx^2+bx+c\)đi qua các điểm A( 1; 1) , B( -1; -3) , O( 0; 0)
b) \(\left(P\right):y=x^2+bx+c\)đi điểm A( 1; 0) và đỉnh I có tung độ bằng -1
Xác định parabol y=ax^2+bx+1 biết đi qua điểm N(1;4)có tung độ đỉnh là 0
Lời giải:
ĐK: $a\neq 0$
Gọi đỉnh của parabol là $I$.
Ta có:
Hoành độ đỉnh: $x_I=\frac{-b}{2a}$
Tung độ đỉnh: $y_I=ax_I^2+bx_I+1=1-\frac{b^2}{4a}=0$
$\Rightarrow b^2=4a(*)$
Mặt khác parabol đi qua điểm $N(1,4)$ nên:
$y_N=ax_N^2+bx_N+1$
$\Leftrightarrow 4=a+b+1(**)$
Từ $(*); (**)\Rightarrow b^2=4(3-b)\Rightarrow b=2$ hoặc $b=-6$
Nếu $b=2\rightarrow a=1$. Parabol $y=x^2+2x+1$
Nếu $b=-6\rightarrow a=9$. Parabol $y=9x^2-6x+1$
Tìm Parabol (P)=ax^2+bx+c biết (P) có tung độ đỉnh bằng 1 và đi qua hai điểm A(2,0), B(-2,-8)
\(\left\{{}\begin{matrix}\dfrac{4ac-b^2}{4a}=1\\4a+2b+c=0\\4a-2b+c=-8\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}4ac-b^2=4a\\4a+2b+c=0\\4b=8\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}b=2\\4ac-4=4a\\4a+4+c=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=2\\ac-1=a\\c=-4a-4\end{matrix}\right.\)
\(\Rightarrow a\left(-4a-4\right)-1=a\)
\(\Rightarrow4a^2+5a+1=0\) \(\Rightarrow\left[{}\begin{matrix}a=-1\Rightarrow c=0\\a=-\dfrac{1}{4}\Rightarrow c=-3\end{matrix}\right.\)
Vậy có 2 pt (P): \(\left[{}\begin{matrix}y=-x^2+2x\\y=-\dfrac{1}{4}x^2+2x-3\end{matrix}\right.\)
Tìm Parabol 2 (P): y=ax2+bx+c đi qua điểm A(1;0) và có tung độ đỉnh bằng -1
Tìm Parabol (P): y=ax2+bx+c đi qua điểm A(1;0) và có tung độ đỉnh bằng -1
Đồ thị của hàm số y = ax đi qua điểm B(3, 1)
a, Xác định hệ số a
b, Tìm điểm trên đồ thị có hoành độ bằng -6
c , Xác định tung độ của điểm có hoành độ bằng : 1;-3;9
d, Xác định hoành độ của điểm có tung độ : 2 ; 1 ;-3
a/ B(3;1) \(\in\) đồ thị hàm số y=ax
\(\Rightarrow\) 1=a3 \(\Rightarrow\) a=\(\frac{1}{3}\)
b/ A(-6;-2) \(\in\) đồ thị
c/ M(1;\(\frac{1}{3}\))
N(-3;-1)
P(9;3)
d/ E(6;2)
B(3;1)
F(-9;-3)
đồ thị của hàm số y=ax đi qua điểm A(3;1)
a)xác định hệ số a
b)vẽ đồ thị hàm số trên
c)xác định tung độ của điểm có hoành độ bằng 1; -3
d)xác định hoành độ của điểm có tung độ bằng 2; -3