cHO các số a,b dương thỏa mãn : \(a^3+b^3=3ab-1\) Chứng minh rằng \(a^{2018}+b^{2019}=2\)
Cho các số a,b dương thỏa mãn a3 + b3 = 3ab - 1
Chứng minh rằng: a2018 + b2019 = 2
Lời giải:
\(a^3+b^3=3ab-1\)
\(\Leftrightarrow a^3+b^3-3ab+1=0\)
\(\Leftrightarrow (a+b)^3-3ab(a+b)-3ab+1=0\)
\(\Leftrightarrow (a+b)^3+1-3ab(a+b+1)=0\)
\(\Leftrightarrow (a+b+1)[(a+b)^2-(a+b)+1]-3ab(a+b+1)=0\)
\(\Leftrightarrow (a+b+1)(a^2+b^2+1-ab-a-b)=0\)
Vì $a,b>0$ nên $a+b+1\neq 0$
Do đó:
\(a^2+b^2+1-a-b-ab=0\)
\(\Leftrightarrow \frac{(a-b)^2+(a-1)^2+(b-1)^2}{2}=0\)
\(\Rightarrow a=b=1\)
Do đó: \(a^{2018}+b^{2019}=1+1=2\)
Ta có đpcm.
Cho các số dương a,b để thỏa mãn : \(a^3+b^3=3ab-1\) CMR:\(a^{2018}+b^{2019}=2\)
Câu hỏi của Trung Nguyễn Thành - Toán lớp 8 - Học toán với OnlineMath tham khảo
Cho a, b là hai số nguyên dương thỏa mãn \(\dfrac{a+b^3}{a^2+3ab+3b^2-1}\) là một số nguyên. Chứng minh rằng a2 + 3ab + 3b2 - 1 chia hết cho lập phương của một số nguyên lớn hơn 1
Cho 3 số a,b,c thỏa mãn:\(a+b+c=1;a^2+b^2+c^2=1;a^3+b^3+c^3=1\).Chứng minh rằng \(a^{2017}+b^{2018}+c^{2019}=1.\)
một số mũ 2 đều lớn hơn hoặc 0
mà cả 3 số cộng lại bằng 1
=> có 2 số bằng 0 và 1 số bằng 1 mới cho kết quả bằng 1
mà số 0 mũ b.n cx bằng 0, số 1 mũ b.n cx bằng 1
=> a2017+b2018+c2019=1
mk ko chắc lắm, nghĩ sao viết vậy thôi
Cho a,b,c là các số thực dương thỏa mãn a+b+c=3
Chứng minh rằng : \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}>\frac{2018}{2003}\)
\(sigma\frac{a}{1+b^2}=sigma\left(a-\frac{ab^2}{1+b^2}\right)\ge sigma\left(a\right)-sigma\frac{ab}{2}\ge3-\frac{\frac{\left(a+b+c\right)^2}{3}}{2}=\frac{3}{2}>\frac{2018}{2003}\)
Cho các số nguyên a,b,c,d thỏa mãn : a + b = c + d và \(a^2+b^2=c^2+d^2\)
Chứng minh rằng \(a^{2018}+b^{2019}=c^{2019}+d^{2018}\)
bn này đội tuyển toán đấy, năm lp 6 đc giải nhất huyện cơ mà
1.Cho \(a,b,c,d\) là các số nguyên thỏa mãn \(a^3+b^3=2\left(c^3-d^3\right)\) . Chứng minh rằng a+b+c+d chia hết cho 3
2.Cho ba số dương a,b,c thỏa mãn abc=1. Chứng minh rằng \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\ge\dfrac{3}{2}\)
thử bài bất :D
Ta có: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{b+c}{4}\ge5\sqrt[5]{\dfrac{1}{a^3\left(b+c\right)}.\dfrac{a^3}{2^3}.\dfrac{\left(b+c\right)}{4}}=\dfrac{5}{2}\) ( AM-GM cho 5 số ) (*)
Hoàn toàn tương tự:
\(\dfrac{1}{b^3\left(c+a\right)}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c+a}{4}\ge5\sqrt[5]{\dfrac{1}{b^3\left(c+a\right)}.\dfrac{b^3}{2^3}.\dfrac{\left(c+a\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (**)
\(\dfrac{1}{c^3\left(a+b\right)}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{a+b}{4}\ge5\sqrt[5]{\dfrac{1}{c^3\left(a+b\right)}.\dfrac{c^3}{2^3}.\dfrac{\left(a+b\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (***)
Cộng (*),(**),(***) vế theo vế ta được:
\(P+\dfrac{3}{2}\left(a+b+c\right)+\dfrac{2\left(a+b+c\right)}{4}\ge\dfrac{15}{2}\) \(\Leftrightarrow P+2\left(a+b+c\right)\ge\dfrac{15}{2}\)
Mà: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( AM-GM 3 số )
Từ đây: \(\Rightarrow P\ge\dfrac{15}{2}-2\left(a+b+c\right)=\dfrac{3}{2}\)
Dấu "=" xảy ra khi a=b=c=1
1. \(a^3+b^3+c^3+d^3=2\left(c^3-d^3\right)+c^3+d^3=3c^3-d^3\) :D
cho a,b dương thỏa mãn \(a^3+b^3=3ab-1\)
cm a2018-b2018=2
Sửa đề cm a2018+b2018=2
Ta có:\(a^3+b^3=3ab-1\)
\(\Leftrightarrow a^3+b^3+1-3ab=0\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+1-3ab=0\)
\(\Leftrightarrow\left(a+b+1\right)\left[\left(a+b\right)^2-\left(a+b\right)+1\right]-3ab\left(a+b+1\right)=0\)
\(\Leftrightarrow\left(a+b+1\right)\left(a^2+2ab+b^2-a-b+1-3ab\right)=0\)
\(\Leftrightarrow\left(a+b+1\right)\left(a^2+ab+b^2-a-b+1\right)=0\)
Vì a,b > 0 => a + b + 1 > 0
=>\(a^2+ab+b^2-a-b+1=0\)
=>2a2+2ab+2b2-2a-2b+2=0
=>(a2+2ab+b2)+(a2-2a+1)+(b2-2b+1)=0
=>(a+b)2+(a-1)2+(b-1)2=0
Mà \(\hept{\begin{cases}\left(a+b\right)^2\ge0\\\left(a-1\right)^2\ge0\\\left(b-1\right)^2\ge0\end{cases}}\Rightarrow VT\ge0\)
=>\(\hept{\begin{cases}a+b=0\\a-1=0\\b-1=0\end{cases}}\)=> a=b=1
=>\(a^{2018}+b^{2018}=1+1=2\)
cho a,b là các số dương thỏa mãn: \(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{2019}\)
chứng minh: \(\sqrt{a+b}\)=\(\sqrt{a-2019}+\sqrt{b-2019}\)
\(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{2019}\Rightarrow\dfrac{a+b}{ab}=\dfrac{1}{2019}\Rightarrow2019=\dfrac{ab}{a+b}\)
\(\dfrac{1}{a}=\dfrac{1}{2019}-\dfrac{1}{b}=\dfrac{b-2019}{2019b}\Rightarrow b-2019=\dfrac{2019b}{a}\)
\(\dfrac{1}{b}=\dfrac{1}{2019}-\dfrac{1}{a}=\dfrac{a-2019}{2019a}\Rightarrow a-2019=\dfrac{2019a}{b}\)
\(\Rightarrow\sqrt{a-2019}+\sqrt{b-2019}=\sqrt{\dfrac{2019a}{b}}+\sqrt{\dfrac{2019b}{a}}=\dfrac{\sqrt{2019}\left(a+b\right)}{\sqrt{ab}}=\sqrt{\dfrac{ab}{a+b}}.\dfrac{a+b}{\sqrt{ab}}=\sqrt{a+b}\)