Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Phúc Thiên
Xem chi tiết
pham thuy duyen
Xem chi tiết
Mai Văn Tài
18 tháng 2 2017 lúc 20:01

ko bit

pham thuy duyen
18 tháng 2 2017 lúc 21:04

ai giúp mình mình cảm ơn

Hà Mai Anh
Xem chi tiết
Phùng Khánh Linh
11 tháng 8 2018 lúc 10:44

Áp dụng BĐT Bunhiacopxki , ta có :

\(\left(2014-x+x-2012\right)\left(1^2+1^2\right)\ge\left(\sqrt{2014-x}+\sqrt{x-2012}\right)^2\)

\(\Leftrightarrow\left(\sqrt{2014-x}+\sqrt{x-2012}\right)^2\le4\left(2012\le x\le2014\right)\)

\(\Leftrightarrow\sqrt{2014-x}+\sqrt{x-2012}\le2\)

\("="\Leftrightarrow x=2013\left(TM\right)\)

Hân Dung Vũ
Xem chi tiết
Vinne
Xem chi tiết
Nguyễn Hoàng Minh
4 tháng 9 2021 lúc 11:33

Ta có \(\sqrt{a^{2012}+2011}\le\dfrac{a^{2012}+2011+1}{2}\)

\(\Leftrightarrow\dfrac{a^{2012}+2012}{\sqrt{a^{2012}+2011}}\ge\dfrac{a^{2012}+2012}{\dfrac{a^{2012}+2012}{2}}=2\)

Dấu \("="\Leftrightarrow a^{2012}+2011=1\Leftrightarrow a\in\varnothing\)

Vậy dấu \("="\) ko xảy ra

\(\Rightarrow\dfrac{a^{2012}+2012}{\sqrt{a^{2012}+2011}}>2\)

Bae Sooji
Xem chi tiết
Trần Gia Huy
25 tháng 7 2019 lúc 15:30

\(\frac{1}{2\sqrt{n+1}}=\frac{1}{\sqrt{n+1}+\sqrt{n+1}}< \frac{1}{\sqrt{n+1}+\sqrt{n}}=\frac{\sqrt{n+1}-\sqrt{n}}{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{n+1-n}=\sqrt{n+1}-\sqrt{n}\)

=> \(\frac{1}{2\sqrt{n+1}}< \sqrt{n+1}-\sqrt{n}\)(1)

\(\frac{1}{2\sqrt{n}}=\frac{1}{\sqrt{n}+\sqrt{n}}>\frac{1}{\sqrt{n+1}+\sqrt{n}}=\frac{\sqrt{n+1}-\sqrt{n}}{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{n+1-n}=\sqrt{n+1}-\sqrt{n}\)=> \(\frac{1}{2\sqrt{n}}>\sqrt{n+1}-\sqrt{n}\)(2)

Từ (1) và (2) => \(\frac{1}{2\sqrt{n+1}}< \sqrt{n+1}-\sqrt{n}< \frac{1}{2\sqrt{n}}\)

thanh hoa
Xem chi tiết
missing you =
9 tháng 7 2021 lúc 21:40

1.có  \(x^2-2x+2=x^2-2x+1+1=\left(x-1\right)^2+1\ge1\)

\(=>\dfrac{x^2-2x+2}{2012}\ge\dfrac{1}{2012}>0\)

Vậy biểu thức trên xác định với mọi x

2. đề này sai thử x=0,8 vào căn kia sẽ ra âm nên ko thể xác định với mọi x

Nguyễn Lê Phước Thịnh
9 tháng 7 2021 lúc 22:41

1) Ta có: \(x^2-2x+2=\left(x-1\right)^2+1>0\forall x\)

\(\Leftrightarrow\dfrac{x^2-2x+2}{2012}>0\forall x\)

Do đó: \(\sqrt{\dfrac{x^2-2x+2}{2012}}\) xác định được với mọi x

Lê Phượng Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 5 2022 lúc 14:26

Đặt \(\sqrt{2012}=a;\sqrt{2013}=b\)

Theo đề, ta có: \(\dfrac{a^2}{b}+\dfrac{b^2}{a}-\left(a+b\right)\)

\(=\dfrac{a^3+b^3}{ab}-\dfrac{ab\left(a+b\right)}{ab}\)

\(=\dfrac{\left(a+b\right)^3-3ab\left(a+b\right)-ab\left(a+b\right)}{ab}\)

\(=\dfrac{\left(a+b\right)^3-4ab\left(a+b\right)}{ab}\)

\(=\dfrac{\left(a+b\right)\left(a-b\right)^2}{ab}>0\)(đpcm)

Diễm Bùi
Xem chi tiết