E, =3+3 mũ 3+3 mũ 5+....+3 mũ 1991
a) E chia hết 13
b) E chia hết 41
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
D=1+3 +3 mũ 2+3 mũ 3+...+3 mũ 11
a) d chia hết 13
b) d chia hết 40
E, =3+3 mũ 3+3 mũ 5+....+3 mũ 1991
a) E chia hết 13
b) E chia hết 41
Bài 2
CMR
1 ab-ba chia hết 9
2 abc - cba chia hết 99
3 Nếu abcd chia hết 99 thì ab -cd chia hết 99
4 Nếu abcd chia hết 101 thì ab-cd =0
5 Nếu ab+ cd +eg chia hết cho 11 thì abcdeg chia hết cho 11
\(D=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^9+3^{10}+3^{11}\right)\)
\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^9\left(1+3+3^2\right)\)
\(=13+13.3^3+...+13.3^9\Rightarrow D⋮13\)
\(D=\left(1+3+3^2+3^3\right)+...+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(=\left(1+3+3^2+3^3\right)+...+3^8\left(1+3+3^2+3^3\right)\)
\(=40+40.3^4+40.3^8\Rightarrow D⋮40\)
Biểu thức E làm tương tự, ý đầu ghép 3 số với nhau được nhân tử là 91 chia hết 13, ý sau ghép 4 số được nhân tử 820 chia hết 41
\(\overline{ab}-\overline{ba}=10a+b-\left(10b+a\right)=9\left(a-b\right)⋮9\)
\(\overline{abc}-\overline{cba}=100a+10b+c-\left(100c+10b+a\right)=99\left(a-c\right)⋮99\)
Câu sau bạn ghi đề sai nhé, đề đúng phải là ab+cd chia hết 99
\(\overline{abcd}=100\overline{ab}+\overline{cd}=99\overline{ab}+\left(\overline{ab}+\overline{cd}\right)⋮99\Rightarrow\overline{ab}+\overline{cd}⋮99\)
\(\overline{abcd}=100\overline{ab}+\overline{cd}=101\overline{ab}-\overline{ab}+\overline{cd}=101\overline{ab}-\left(\overline{ab}-\overline{cd}\right)\)
Mà \(101\overline{ab}⋮101\Rightarrow\overline{ab}-\overline{cd}⋮101\)
\(\overline{abcdef}=10000\overline{ab}+100\overline{cd}+\overline{ef}=9999\overline{ab}+99\overline{cd}+\left(\overline{ab}+\overline{cd}+\overline{ef}\right)\)
Do \(9999⋮11\) ; \(99⋮11\); \(\overline{ab}+\overline{cd}+\overline{ef}⋮11\Rightarrow\overline{abcdef}⋮11\)
Giúp em nhanh lên với ạ
Mn ơi giúp em nhanh nhé em sắp đi học rồi
Chứng tỏ rằng :
A) 5 mũ 2016 + 5 mũ 2015 + 5 mũ 2016 chia hết cho 31
B) 1+7+7 mũ 2 + 7 mũ 3+ .....+7 mũ 701 chia hết cho 8
C) 4 mũ 39 + 4 mũ 40+ 4 mũ 41 chia hết cho 28
Làm giúp e nhanh lên nha ! E khẩn cấp lắm ồi
b: \(B=\left(1+7\right)+7^2\left(1+7\right)+...+7^{100}\left(1+7\right)\)
\(=8\cdot\left(1+7^2+...+7^{100}\right)⋮8\)
c: \(C=4^{39}\left(1+4+4^2\right)=4^{39}\cdot21=4^{38}\cdot84⋮28\)
Cho E=1 + 4 + 4 mũ 2 + 4 mũ 3 +....+4 mũ 58 + 4 mũ 59.Hãy chứng minh rằng E chia hết cho 5 và E chia hết cho 21
A=1+4+4^2+...+4^59A=1+4+4^2+...+4^59
A=(1+4)+(4^2+4^3)+...+(4^58+4^59)A=(1+4)+(4^2+4^3)+...+(4^58+4^59)
A=(1+4)+4^2(1+4)+...+4^58(1+4)A=(1+4)+4^2(1+4)+...+4^58(1+4)
A=5+4^2.5+...+4^58.5A=5+4^2.5+...+4^58.5
A=5(1+4^2+...+4^48)A=5(1+4^2+...+4^58)
A=5(1+4^2+...+4^58) chia hết cho 5
vậy A chia hết cho 5
A=1+4+4^2+...+4^59A=1+4+4^2+...+4^59
A=(1+4+4^2)+(4^3+4^4+4^5)+...+(4^57+4^58+4^59)A=(1+4+4^2)+(4^3+4^4+4^5)+...+(4^57+4^58+4^59)
A=(1+4+4^2)+4^3(1+4+4^2)+...+4^57(1+4+4^2)A=(1+4+4^2)+4^3(1+4+4^2)+...+4^57(1+4+4^2)
A=21+4^3.21+...+4^57.21A=21+4^3.21+...+4^57.21
A=21(1+4^3+...+4^57)A=21(1+4^3+...+4^57)
A=21(1+4^3+...+4^57) chia hết cho 21
vậy A chia hết cho 21
mik làm xong rồi nhớ k cho mik nha mik cảm ơn
Bài 1: Tính
a, B = 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 + ... + 2 mũ 100
b, C = 1 + 3 + 3 mũ 2 + 3 mũ 3 + .... + 3 mũ 2003
c, D = 1 + 5 + 5 mũ 2 + 5 mũ 3 + ... 5 mũ 1997
d, E = 4 + 4 mũ 2 + 4 mũ 3 + ... + 4 mũ n
Bài 2: Tìm a
a, ( 2a + 27 ) chia hết 2a + 1
b, ( 5a + 28 ) chia hết a + 2
c, ( 3a + 15 ) chia hết ( 3a - 1 )
CHỨNG MINH RẰNG
A = 2 + 2 mũ 2 + 2 mũ 3 + ......+ 2 mũ 60 chia hết cho 3,7,15
B= 3 +3 mũ 3 + 3 mũ 5 +.........+3 mũ 1991 chia hết cho 13 , 41
D= 11 mũ 9 + 11 mũ 8 + 11 mũ 7 +.........+11 +1 chia hết cho 5
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+..+\left(2^{59}+2^{60}\right)=3.2+3.2^3+3.2^5+..+3.2^{59}\) Vậy A chia hết cho 3
\(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+..+\left(2^{58}+2^{59}+2^{60}\right)=7.2+7.2^4+..+7.2^{58}\) Vậy A chia hết cho 7
\(A=\left(2+2^2+2^3+2^4\right)+..+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)=2.15+2^5.15+..+2^{57}.15\) Vậy A chia hết cho 15.
\(B=\left(3+3^3+3^5\right)+..+\left(3^{1987}+3^{1989}+3^{1991}\right)=3.91+3^7.91+..+3^{1986}.91\)
mà 91 chia hết cho 13 nên B chia hết cho 13.
\(B=\left(3+3^3+3^5+3^7\right)+..+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)=3.820+3^9.820+..+3^{1985}.820\)Mà 820 chia hết cho 41 nên B chia hết cho 41.
D : để ý rằng \(11^k\) đều có đuôi là 1
nên D có đuôi là đuôi của \(1+1+..+1=10\)
Vậy D chia hết cho 5
A= (1 + 3 + 3 mũ 2 + 3 mũ 3 + 3 mũ 4 + 3 mũ 5 + 3 mũ 6 +...+3 mũ 217) chứng minh A chia hết cho 41
A = 3 mũ 1+ 3 mũ 3+ 3 mũ 5+...+3 mũ 2021
hỏi A có chia hết cho 41 không ? Tại sao ?
A= 3 mũ 1+3 mũ 3+3 mũ 5+...+3 mũ 2021
hỏi A có chia hết cho 41 không ? tại sao ?
31 + 33 + 35 + ... + 32021
Xét dãy số: 1; 3; 5;...; 2021
Dãy số trên là dãy số cách đều với khoảng cách là:
3 - 1 = 2
Số số hạng của dãy số trên là: (2021 - 1) : 2 + 1 = 1011
Vậy A có 1011 hạng tử.
Vì 1011 : 4 = 252 dư 3
Nên nhóm 4 hạng tử liên tiếp của A thành một nhóm thì
A = (31+33+35)+ (37+ 39+311+313)+...+(32007+32009+32011+32013) + (32015+32017+32019+32021)
A = (3 + 27 + 243)+ 36(3+33+35+37) + ...+32006.(3+33+35+37) + 32014.(3 + 33 + 35+ 37)
A = 273 +36.2460+...+ 32006.2460+...+ 32014.2460
A = 273 + 2460.(36+... + 32006 + 32014)
vì 2460 ⋮ 41 mà 273 : 41 = 6 dư 27
Vậy A không chia hết cho 41
1.Cho E=5+5 mũ 2+5 mũ 3+....+5 mũ 100. Tìm số dư khi chia E cho 6
2. Chứng tỏ rằng với mọi số tự nhiên n thì n(n+2)(n+7): 3( chia hết cho 3)
3. Tìm số nguyên tố nhỏ hơn 200 , biết rằng khi chia số đó cho 60 thì số dư là hợp số
Bài 1:
Giải :
Ta có: \(E=5+5^2+5^3+5^4+...+5^{97}+5^{98}+5^{99}+5^{100}\) \(\Leftrightarrow E=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{97}+5^{98}\right)+\left(5^{99}+5^{100}\right)\)
\(\Leftrightarrow E=5.\left(1+5\right)+5^3.\left(1+5\right)+...+5^{97}.\left(1+5\right)+5^{99}.\left(1+5\right)\)
\(\Leftrightarrow E=5.6+5^3.6+...+5^{97}.6+5^{99}.6\)
\(\Leftrightarrow E=6.\left(5+5^3+...+5^{97}+5^{99}\right)\)
\(\Rightarrow E⋮6\)
Do \(E⋮6\)nên \(E\div6\)dư 0
Vậy \(E\div6\)có số dư bằng \(0\)
Bài 2:
Giải :
Ta có: \(n.\left(n+2\right).\left(n+7\right)\)
\(=\left(n^2+2n\right).\left(n+7\right)\)
\(=n^3+2n^2+7n^2+14n\)
\(=n^3+9n^2+14n\)
\(=n.\left(n^2+9n+14\right)\)
cho c=5+5 mũ 2+ 5 mũ 3+....+5 mũ 20 chứng minh C chia hết cho 6, 13