Cho : a/b = c/d
C/m : a2020 + b2020/ c2020 + d2020 = ( a + c )2020/ ( b + d )2020
cho a,b dương và a2020 + b2020 = a2021 + b2021 = a2022 + b2022. tính a2025 + b2025
cho a/b=c/d . Chứng minh rằng:
a) (a+2c).(b+d)=(a+c).(b+2d)
b) a^2020+b^2020/c^2020+d^2020=(a+b)^2020/(c+d)^2020
Cho \(\frac{a}{b}=\frac{c}{d}\)CMR
1) \(\frac{a^{2020}-b^{2020}}{a^{2020}+b^{2020}}=\frac{^{c^{2020}-d^{2020}}}{c^{2020}+d^{2020}}\)
Ko khó đâu bn ơi
Đặt a/b=c/d=k
=> a=bk và c=dk
Xong thay vào (a^2020-b^2020)/(a^2020+b^2020)=(b^2020.k^2020-b^2020)/(b^2020.k^2020+b^2020)
= (k^2020-1)/(k^2020+1)
Tiếp tục thay vào (c^2020-d^2020)/(c^2020+d^2020)=(d^2020.k^2020-d^2020)/(d^2020.k^2020+d^2020)
= (k^2020-1)/(k^2020+1)
=> đpcm.
cho a/b=c/d. chứng minh rằng: 2a+b/b=2c+d/d
a.2a+b/b=2c+d/d
b.a^2020+c^2020/b^2020+d^2020=(a+b)^2020/(b+d)^2020
c.a^2+c^2/b^2+a^2=a.c/b.d
CM:\(\dfrac{a^{2020}-b^{2020}+c^{2020}}{b^{2020}-c^{2020}+d^{2020}}\) =\(\left(\dfrac{a-b+c}{b-c+d}\right)^{2020}\)
Ta có : a2020 - b2020 + c2020/b2020 - c2020 + d2020
= (a-b+c)2020/(b-c+d)2020 =(a-b+c/b-c+d)2020 (dpcm)
a ) cho a/b = c/d cm a-b/a=c-d/c
b ) cho a+2019/a-2019 = b + 2020 /b-2020 cm a/b = 2019/2020
a)Áp dụng tính chất của dãy tỉ số bằng nhau: \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\left(a,b,c,d\ne0\right)\)\(\Leftrightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\left(c\ne d,a\ne b\right)\Leftrightarrow\frac{a-b}{a}=\frac{c-d}{c}\)
b)a)Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{a+2019}{a-2019}=\frac{b+2020}{b-2020}\left(đk:a\ne\pm2019,b\ne\pm2020\right)\)\(\Leftrightarrow\frac{a+2019}{b+2020}=\frac{a-2019}{b-2020}=\frac{a+2019+a-2019}{b+2020+b-2020}=\frac{\left(a+2019\right)-\left(a-2019\right)}{\left(b+2020\right)-\left(b-2020\right)}=\frac{a}{b}=\frac{2019}{2020}\left(a,b\ne0\right)\left(đpcm\right)\)
cho a^3 +b^3+c^3=3abc và a+b+c khác 0 tính giá trị của biểu thức M=a^2020+b^2020+c^2020/(a+b+c)^2020
Ta có: \(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
mà \(a+b+c\ne0\)
nên \(a^2+b^2+c^2-ab-ac-bc=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Leftrightarrow a=b=c\)
Ta có: \(M=\dfrac{a^{2020}+b^{2020}+c^{2020}}{\left(a+b+c\right)^{2020}}\)
\(=\dfrac{a^{2020}+a^{2020}+a^{2020}}{\left(a+a+a\right)^{2020}}=\dfrac{3\cdot a^{2020}}{9\cdot a^{2020}}=\dfrac{1}{3}\)
Cho các số a,b,c,d khác 0 và x,y,z,t thỏa mãn :
\(\frac{x^{2020}+y^{2020}+z^{2020}+t^{2020}}{a^{2020}+b^{2020}+c^{2020}+d^{2020}}=\frac{x^{2020}}{a^{2020}}+\frac{y^{2020}}{b^{2020}}+\frac{z^{2020}}{c^{2020}}+\frac{t^{2020}}{d^{2020}}\)
Tính \(T=x^{2019}+y^{2019}+z^{2019}+t^{2019}\)
Bạn hãy dựa vào link này mà tự làm nhé :
https://olm.vn/hoi-dap/detail/246211413079.html
Bài làm của mình đó !