x^2+13x+42
(13x+2)(3x-2)căn (x+3)=-42
Tìm x
x^3 + 6x^2 - 13x - 42 = 0
\(x^3+6x^2-13x-42=0\)
\(\Leftrightarrow\left(x^3-3x^2\right)+\left(9x^2-27x\right)+\left(14x-42\right)=0\)
\(\Leftrightarrow x^2\left(x-3\right)+9x\left(x-3\right)+14\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)+\left(x^2+9x+14\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2+7x+2x+14\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left[x\left(x+7\right)+2\left(x+7\right)\right]=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)\left(x+7\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-3=0\\x+2=0\\x+7=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=3\\x=-2\\x=-7\end{array}\right.\)
x3 + 6x2 - 13x - 42 = 0
=> x3 - 3x2 + 9x2 - 27x + 14x - 42 = 0
=> x2 ( x - 3 ) + 9x ( x - 3 ) + 14 ( x - 3 ) = 0
=> ( x - 3 ) ( x2 + 9x + 14) = 0
=> ( x - 3 ) ( x2 + 2x + 7x + 14 ) = 0
=> ( x - 3 ) [ x ( x + 2 ) + 7 ( x + 2 ) ] = 0
=> ( x - 3 ) ( x + 2 ) ( x + 7 ) = 0
=> x - 3 = 0 => x = 3
=> x + 2 = 0 => x = -2
=> x + 7 = 0 => x = -7
x3+6x2-13x-42
\(x^3+6x^2-13x-42\)
\(=x^2\left(x+7\right)-x\left(x+7\right)-6\left(x+7\right)\)
\(=\left(x^2-x-6\right)\left(x+7\right)\)
\(=\left(x-3\right)\left(x+2\right)\left(x+7\right)\)
x3+6x2−13x−42
x3+6x2−13x−42
=(x+7)(x−3)(x+2)
giải phương trình\(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\)
$ĐKXĐ:x \neq -4;-5;-6;-7$
$pt⇔\dfrac{1}{x^2+4x+5x+20}+\dfrac{1}{x^2+5x+6x+30}+\dfrac{1}{x^2+6x+7x+42}=\dfrac{1}{18}$
$⇔\dfrac{1}{(x+4)(x+5)}+\dfrac{1}{(x+5)(x+6)}+\dfrac{1}{(x+6)(x+7)}=\dfrac{1}{18}$
$⇔\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}$
$⇔\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}$
$⇔\dfrac{3}{(x+4)(x+7)}=\dfrac{1}{18}$
$⇔x^2+11x+28=54$
$⇔x^2+11x-26=0$
$⇔x^2-2x+13x-26=0$
$⇔(x-2)(x+13)=0$
$⇔$ \(\left[{}\begin{matrix}x=2\\x=-13\end{matrix}\right.\)(t/m)
Vậy phương trình đã cho có tập nghiệm $S=(2;-13)$
Giải PT sau: \(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\)
Ta có:
\(x^2+9x+2x=\left(x+4\right)\left(x+5\right)\)
\(x^2+11x+30=\left(x+6\right)\left(x+5\right)\)
\(x^2+13x+42=\left(x+6\right)\left(x+7\right)\)
ĐK: \(\left\{{}\begin{matrix}x\ne-4\\x\ne-5\\x\ne-6\\x\ne-7\end{matrix}\right.\)
pt \(\Leftrightarrow\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{18\left(x+7\right)}{18\left(x+4\right)\left(x+7\right)}-\dfrac{18\left(x+4\right)}{18\left(x+4\right)\left(x+7\right)}=\dfrac{\left(x+4\right)\left(x+7\right)}{18\left(x+4\right)\left(x+7\right)}\)
\(\Rightarrow18\left(x+7\right)-18\left(x+4\right)=\left(x+4\right)\left(x+7\right)\)
\(\Leftrightarrow\left(x+13\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+13=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-13\\x=2\end{matrix}\right.\) (tm)
x2-13x+42=0
x2+13x+42=0
Two solutions were found :
x = -6 x = -7Step by step solution :
Step 1 :
Trying to factor by splitting the middle term
1.1 Factoring x2+13x+42
The first term is, x2 its coefficient is 1 .
The middle term is, +13x its coefficient is 13 .
The last term, "the constant", is +42
Step-1 : Multiply the coefficient of the first term by the constant 1 • 42 = 42
Step-2 : Find two factors of 42 whose sum equals the coefficient of the middle term, which is 13 .
-42 | + | -1 | = | -43 | ||
-21 | + | -2 | = | -23 | ||
-14 | + | -3 | = | -17 | ||
-7 | + | -6 | = | -13 | ||
-6 | + | -7 | = | -13 | ||
-3 | + | -14 | = | -17 | ||
-2 | + | -21 | = | -23 | ||
-1 | + | -42 | = | -43 | ||
1 | + | 42 | = | 43 | ||
2 | + | 21 | = | 23 | ||
3 | + | 14 | = | 17 | ||
6 | + | 7 | = | 13 | That's it |
Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above, 6 and 7
x2 + 6x + 7x + 42
Step-4 : Add up the first 2 terms, pulling out factors :
x • (x+6)
Add up the last 2 terms, pulling out common factors :
7 • (x+6)
Step-5 : Add up the four terms of step 4 :
(x+7) • (x+6)
Which is the desired factorization
Equation at the end of step 1 :
(x + 7) • (x + 6) = 0
Tim tat ca cac so x sao cho:
(x^2-7x+11)^(x^2-13x+42)=1
Giải phương trình
1/x^2+9x+20+1/x^2+11x+30+1/x^2+13x+42=1/18
mình mới trả lời https://hoc24.vn/hoi-dap/question/601446.html
(x^2+11x+12)(x^2+9x+20)(x^2+13X+42)=36(x^2+11x+30)(x^2+11x+31) ae giúp mik vs mik cần gấp ạ