Thực hiện phép tính
a) 3x2 (x3 -2x +3)
b) (x2 +4x-2)(x-5)
Bài 1. Thực hiện phép tính:
a) 2xy(x2+ xy - 3y2)
b) (x + 2)(3x2 - 4x)
c) (x3 + 3x2 - 8x - 20) : (x + 2)
d) (x + y)2 + (x – y)2 – 2(x + y)(x - y) e) (a + b)3 - (a – b)3 – 2b3
f) 2x2(x – 2)+ 3x(x2 – x – 2) –5(3 – x2)
g) (x – 1)(x – 3) – (4 – x)(2x + 1) – 3x2 + 2x – 5
c: \(=\dfrac{x^3+2x^2+x^2+2x-10x-20}{x+2}\)
\(=x^2+x-10\)
Thực hiện phép chia:
a) ( 4 x 3 - 3 x 2 +1): ( x 2 + 2x -1);
b) (2 x 4 - 11 x 3 + 19 x 2 - 20x + 9): ( x 2 - 4x +1).
a) Đa thức thương 4x – 11 và đa thức dư 26x – 10.
b) Đa thức thương 2 x 2 – 3x + 5 và đa thức dư 3x + 4.
Bài 1: Thực hiện phép tính:
a) 2x.(3x2 – 5x + 3) b) (-2x-1).( x2 + 5x – 3 ) – (x-1)3
c) (2x – y).(4x2 + 2xy + y2) d) (6x5y2 – 9x4y3 + 15x3y4) : 3x3y2
e) (x3 – 3x2 + x – 3) : (x – 3)
Bài 2: Tìm x, biết:
a) 5x(x – 1) = 10 (x – 1); b) 2(x + 5) – x2 – 5x = 0;
c) x3 - x = 0; d) (2x – 1)2 – (4x – 3)2 = 0
e) (5x + 3)(x – 4) – (x – 5)x = (2x – 5)(5+2x )
Bài 3: Chứng minh rằng giá trị của biểu thức không phụ thuộc vào giá trị của biến.
a) x(3x + 12) – (7x – 20) + x2(2x – 3) – x(2x2 + 5).
b) 3(2x – 1) – 5(x – 3) + 6(3x – 4) – 19x.
Bài 4: Phân tích đa thức thành nhân tử.
a) 10x(x – y) – 8(y – x) b) (3x + 1)2 – (2x + 1)2
c) - 5x2 + 10xy – 5y2 + 20z2 d) 4x2 – 4x +4 – y2
e) 2x2 - 9xy – 5y2 f) x3 – 4x2 + 4 x – xy2
Bài 5: Tìm giá trị nhỏ nhất của biểu thức
a) A = 9x2 – 6x + 11 b) B = 4x2 – 20x + 101
Bài 6: Tìm giá trị lớn nhất của biểu thức
a) A = x – x2 b) B = – x2 + 6x – 11
a) 2x.(3x2 – 5x + 3)
=2x3-10x2+6x
b(-2x-1).( x2 + 5x – 3 ) – (x-1)3
=-2x3 - 10x2 + 6x - x2 - 5x + 3 - x3 + 3x2 - 3x + 1
= -3x3 - 8x2 - 2x + 4
d) (6x5y2 – 9x4y3 + 15x3y4) : 3x3y2
=2x2-3xy+5y2
Thực hiện phép tính:
1)(x3-8):(x-2)
2)(x3-1):(x2+x+1)
3)(x3+3x2+3x+1):(x2+2x+1)
4)(25x2-4y2):(5x-2y)
1) \(\left(x^3-8\right):\left(x-2\right)=\left[\left(x-2\right)\left(x^2+2x+4\right)\right]:\left(x-2\right)=x^2+2x+4\)
2) \(\left(x^3-1\right):\left(x^2+x+1\right)=\left[\left(x-1\right)\left(x^2+x+1\right)\right]:\left(x^2+x+1\right)=x-1\)
3) \(\left(x^3+3x^2+3x+1\right):\left(x^2+2x+1\right)=\left(x+1\right)^3:\left(x+1\right)^2=x+1\)
4) \(\left(25x^2-4y^2\right):\left(5x-2y\right)=\left[\left(5x-2y\right)\left(5x+2y\right)\right]:\left(5x-2y\right)=5x+2y\)
Bài 1: Thực hiện phép tính :
a)2xy(x2 +xy-3y2 )
b)(x+2)(3x2-4x)
c)(x3 +3x2 -8x-20):(x+2)
d)(4x2 -4x-4):(x+4)
e)(2x3 - 3x2 +x-2):(x+5)
f) (x+y)2 +(x-y)2 -2(x+y)(x-y)
g)(a+b)3 - (a-b)3 -2b3
h)(x-y)(x+y)(x2 + y2 )(x4 +y4)
i)2x2 (x-2)+3x(x2 -x-2)-5(3-x2 )
k)(x-1)(x-3)-(4-x)(2x+1)-3x2+2x-5
l)( x4 -x3 -3x2 +x+2):(x2 - 1)
(Giups mình với, cảm ơn mọi người nhiều ạ )
Tải trên điện thoaaij về phần mềm PhotoMath thì bạn sẽ có đáp án và bài giải bài thực hiện phép tính này. Nếu thắc mắc về cánh sử dụng thì seach mạng.
\(2xy\left(x^2+xy-3y^2\right)\)
\(=2xy.x^2+2xy.xy-2xy.3y^2\)
\(=2x^3y+2x^2y^2-6xy^3\)
a) Thực hiện phép chia đa thức (2x4 - 6x3 +12x2 - 14x + 3) cho đa thức (x2 – 4x +1)
b) Thực hiện phép chia đa thức (2x4 – 5x3 + 2x2 +2x - 1) cho đa thức (x2 – x - 1)
Bài 2:
a) Tìm a để đa thức (2x4 + x3 - 3x2 + 5x + a) chia hết cho đa thức (x2 - x +1)
Bài 1:
a: \(=\dfrac{2x^4-8x^3+2x^2+2x^3-8x^2+2x+18x^2-72x+18+56x-15}{x^2-4x+1}\)
\(=2x^2+2x+18+\dfrac{56x-15}{x^2-4x+1}\)
bài 1: Thực hiện phép tính
a/ (4x-3) (2x+5)
B/ (14X5y - 7x2y3 + 3X4y) :7x2y
c/ (2x3-3x2-11x +6):(x-3)
bài 2: Phân thức đa thức thành nhân tử
a/ x3-25x
b/ x2-2xy+3x-6y
c/ 8x3+4x2-6x-27
Bài 2:
a: =x(x^2-25)
=x(x-5)(x+5)
b: =x(x-2y)+3(x-2y)
=(x-2y)(x+3)
c: =(2x-3)(4x^2+6x+9)+2x(2x-3)
=(2x-3)(4x^2+8x+9)
Bài 1:Thực hiện các phép tính
a. (x5 +4x3 - 6x2):4x2
b. (x3 +x2-12) : (x-2)
c. (-2x5+3x2-4x3):2x2
d. (x3 - 64):(x2 + 4x + 16)
Bài 2:Rút gọn biểu thức
a. 3x (x - 2)- 5x (1 - x) - 8(x2 - 3)
b.(x - y) (x2 + xy + y2)+2y3
c. (x - y)2 + (x+y)2 - 2(x-y) (x+y)
a) \(\left(x^5+4x^3-6x^2\right):4x^2\)
\(=\left(x^5:4x^2\right)+\left(4x^3:4x^2\right)+\left(-6x^2:4x^2\right)\)
\(=\dfrac{1}{4}x^3+x-\dfrac{3}{2}\)
b)
Vậy \(\left(x^3+x^2-12\right):\left(x-2\right)=x^2+3x+6\)
c) (-2x5 : 2x2) + (3x2 : 2x2) + (-4x^3 : 2x^2)
= \(-x^3+\dfrac{3}{2}-2x\)
d) \(\left(x^3-64\right):\left(x^2+4x+16\right)\)
\(=\left(x-4\right)\left(x^2+4x+16\right):\left(x^2+4x+16\right)\)
\(=x-4\)
(dùng hẳng đẳng thức thứ 7)
Bài 2 :
a) 3x(x - 2) - 5x(1 - x) - 8(x2 - 3)
= 3x2 - 6x - 5x + 5x2 - 8x2 + 24
= (3x2 + 5x2 - 8x2) + (-6x - 5x) + 24
= -11x + 24
b) (x - y)(x2 + xy + y2) + 2y3
= x3 - y3 + 2y3
= x3 + y3
c) (x - y)2 + (x + y)2 - 2(x - y)(x + y)
= (x - y)2 - 2(x - y)(x + y) + (x + y)2
= [(x - y) + x + y)2 = [x - y + x + y] = (2x)2 = 4x2
Bài 1 :
a]= \(\frac{1}{4}\)x3 + x - \(\frac{3}{2}\).
b] => [x3 + x2 -12 ] = [ x2 +3 ][x-2] + [-6]
c]= -x3 -2x +\(\frac{3}{2}\).
d] = [ x3 - 64 ] = [ x2 + 4x + 16][ x- 4].
thực hiện phép tính
a) 5x(3x2-4x+2)
b)(x2-3x)(3x2-x+4)
2) tìm x biết
a) x3-6x2+12x=0
b)x3+9x2+27x+27=0
giúp mình mn ơi