TÍNH \(A=\frac{2}{1+2\sqrt{2}-\sqrt[3]{3}-\sqrt[3]{9}}.\)
MỌI NGƯỜI AI GIÚP MÌNH VỚI !!! CÁM ƠN NHIỀU Ạ!!
Mọi người làm ơn giúp mình với ạ!! Một bài thôi cũng được!! Mình cần gấp , cám ơn.
Bài 1: tìm đkxd, rút gọn biểu thức:
A=\(\left(\frac{6x+4}{3\sqrt{3x^3}-8}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right)\left(\frac{1+3\sqrt{3x^3}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
Bài 2:
cho a, b, c là các số thực dương. CMR \(\left(a+b\right)^2+\frac{a+b}{2}\ge2a\sqrt{b}+2b\sqrt{a}\)
(đề thi chọn học sinh giỏi toán 9 năm học 2013-2014 thcs Thanh Tiên huyện Thanh chương)
1, Chứng minh bất đẳng thức:
\(a+\sqrt{a^2-2a+5}+\sqrt{a-1}\ge3\forall a\ge1\)
2, Giải phương trình:
\(x\left(x^2-3x+3\right)+\sqrt{x+3}=3\)
Mong mọi người giúp mình với ạ!! Mình cảm ơn nhiều!!
Bài 1:
Vì $a\geq 1$ nên:
\(a+\sqrt{a^2-2a+5}+\sqrt{a-1}=a+\sqrt{(a-1)^2+4}+\sqrt{a-1}\)
\(\geq 1+\sqrt{4}+0=3\)
Ta có đpcm
Dấu "=" xảy ra khi $a=1$
Bài 2:
ĐKXĐ: x\geq -3$
Xét hàm:
\(f(x)=x(x^2-3x+3)+\sqrt{x+3}-3\)
\(f'(x)=3x^2-6x+3+\frac{1}{2\sqrt{x+3}}=3(x-1)^2+\frac{1}{2\sqrt{x+3}}>0, \forall x\geq -3\)
Do đó $f(x)$ đồng biến trên TXĐ
\(\Rightarrow f(x)=0\) có nghiệm duy nhất
Dễ thấy pt có nghiệm $x=1$ nên đây chính là nghiệm duy nhất.
TÍNH \(E=\sqrt[3]{99+70\sqrt{2}}+\sqrt[3]{25-22\sqrt{2}}.\)
GIÚP MÌNH VỚI, MÌNH ĐANG CẦN!!!!CÁM ƠN NHIỀU Ạ
\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+.....\frac{1}{\sqrt{99}+\sqrt{100}}=9\) =9
Bạn nào chứng minh giúp mình với
Mình biết ơn nhiều lắm ạ!
\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}\)
\(=\frac{\sqrt{2}-1}{\left(\sqrt{2}-1\right).\left(1+\sqrt{2}\right)}+\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{2}+\sqrt{3}\right).\left(\sqrt{3}-\sqrt{2}\right)}+...+\frac{\sqrt{100}-\sqrt{99}}{\left(\sqrt{100}-\sqrt{99}\right).\left(\sqrt{99}+\sqrt{100}\right)}\)
\(=\frac{\sqrt{2}-1}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{100}-\sqrt{99}}{100-99}\)
\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}=\sqrt{100}-1=10-1=9\)
Xin mọi người giúp dùm em bài này ạ. Em xin cám ơn
\(\sqrt{\frac{2}{8+3\sqrt{7}}}+\sqrt{\frac{38-14\sqrt{7}}{3-\sqrt{7}}}\)
CÂU 1: TÍNH \(E=\sqrt[3]{99+70\sqrt{2}}+\sqrt[3]{25-22\sqrt{2}}.\)
CÂU 2: TRỤC CĂN THỨC Ở MẪU \(A=\frac{2}{1+2\sqrt{2}-\sqrt[3]{3}-\sqrt[3]{9}}.\)
CÂU 3: SO SÁNH \(A=\sqrt{2020}-\sqrt{2019}\)VÀ \(B=\sqrt[3]{2020}-\sqrt[3]{2019}\)
GIÚP MÌNH VỚI, MÌNH CÁM ƠN NHIỀU
Giúp mình bài này với ạ...mình cần gấp, cảm ơn mọi người
a) \(\frac{3+\sqrt{5}}{\sqrt{10}+\sqrt{3+\sqrt{5}}}-\frac{3-\sqrt{5}}{\sqrt{10}+\sqrt{3-\sqrt{5}}}\)
b) \(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
a/ Đặt \(\hept{\begin{cases}\sqrt{3+\sqrt{5}}=a\\\sqrt{3-\sqrt{5}}=b\end{cases}}\)
Khi đó ta có a2 + b2 = 6; ab = 2; a + b = \(\sqrt{10}\) ; a - b = \(\sqrt{2}\); a2 - b2 = \(2\sqrt{5}\)
Ta có cái ban đầu
\(=\frac{a^2}{\sqrt{10}+a}-\frac{b^2}{\sqrt{10}+b}\)=
\(\frac{\sqrt{10}a^2+a^2b-\sqrt{10}b^2-ab^2}{10+\sqrt{10}a+\sqrt{10}b+ab}\)
\(=\frac{10\sqrt{2}+2\sqrt{2}}{10+10+2}=\frac{6\sqrt{2}}{11}\)
Mọi người giúp mình ạ!Mình cảm ơn nhiều!!!!!!
1.\(\sqrt[3]{x+1}+\sqrt[3]{x+2}+\sqrt[3]{x+3}=0\)
2.\(\sqrt{x+3}+\sqrt{3x+1}=2\sqrt{x}+\sqrt{2x+2}\)
Mình cần gấp lắm!!!!!!!!
mọi người giúp em với ạ em cảm ơn\(\sqrt{\frac{3\sqrt{3}-4}{2\sqrt{3}-1}}-\sqrt{\frac{\sqrt{3}+4}{5-2\sqrt{3}}}\)