cho hình vuông ABCD có cạnh =a trên canhj AB,AD lấy 2 điểm E,F sao cho tg AEF=2a. Cm góc ECF=45 độ
bài 1 cho tam giác ABC vuông tại A đường phân giác AD , gọi E,F lần lượt là hình chiếu của D trên AB và AC . CM tứ giác ADEF là hình vuông
bài 2 cho hình vuông ABCD có góc A=góc D = 90 độ , DC=2AB=2AD . Kẻ BD vuông góc DC ( K thuộc DC)
a, CM tứ giác ABKD là hình vuông
bài 3 cho hình vuông ABCD , có cạnh 4cm , lấy điểm E trên BC , điểm F trên CD sao cho góc EAF = 45 . Trên tiaa đối của tia DC lấy K sao cho DK=BE
a, tính góc KAF
b, tính chu vi tam giác CEF
Bài 1:
Do E là hình chiếu của D trên AB:
=) DE\(\perp\)AB tại E
=) \(\widehat{DE\text{A}}\)=900
Do F là hình chiếu của D trên AC:
=) DF\(\perp\)AC
=) \(\widehat{DFA}\)=900
Xét tứ giác AEDF có :
\(\widehat{D\text{E}F}\)=\(\widehat{E\text{A}F}\)=\(\widehat{DFA}\) (cùng bằng 900)
=) Tứ giác AEDF là hình chữ nhật
Xét hình chữ nhật AEDF có :
AD là tia phân giác của \(\widehat{E\text{A}F}\)
=) AEDF là hình vuông
cho cạnh hình vuông ABCD có độ dài là 1. trên các canh AB,AD lấy điểm P,Q sao cho chu vi = 2. CM góc PCQ = 45 độ
a,Dựng hình:_ Lấy 1 điểm Q bất kì thuộc cạnh AD
_Nối QC.Xác định điểm P thuộc AB sao cho góc PCQ = 45*
_Ta được tam giác APQ có chu vi bằng 2
Chứng minh:Trên tia đối của tia BA lấy điểm K sao cho BK=QD
Ta có:tam giác QDC=tam giác KBC (c-g-c)
=>QC=KC(2 cạnh tương ứng)
góc QCD = góc BCK (2 góc tương ứng)=>góc PCK = 45* và = góc QCP (theo cách vẽ)
tam giác QCP = tam giác KCP (c-g-c)
=> QP=PK (2 cạnh tương ứng)
Chu vi tam giác APQ = AP+PQ+QA=AP+PK+QA=AP+PB+QD+QA=2AB=2
b,Ta chứng minh ngược lại với câu a:
Trên tia đối của tia BA lấy điểm K sao cho BK=QD
tam giác QDC= tam giác KBC (c-g-c)
=>QC=KC(2 cạnh tương ứng)
tam giác QPC = tam giác KPC (c-c-c)
=>góc QPC= góc PCB + góc BCK=góc PCB+ gócQCD =45*
Cho cạnh hình vuông ABCD có độ dài cạnh là 1 .Trên cạnh AB,AD lấy các điểm P,Q sao cho chu vi tgAPQ bằng 2.CM góc PCQ bằng 45 độ.
ta có AB+AD=AP+PB+AQ+QD=1+1=2 mà AQ+QP+AP=2
PB+QD=QP . (*1)
Trên tia đối của BA lấy E sao cho BE=QD (*2) .
Từ (*1)(*2) có PB+BE=QP hay PE=QP
Xét 2 tam giác vuông BEC và DQC có :
BC=DC
BE=QD
tam giác BEC= tam giác DQC ( 2 cạnh góc vuông )(*****!) CE=CQ
xát tam giác QCP và tam giác ECP có :
QC=CE (c/m trên)
chung cạnh CP
QP=PE
tam giác QCP= tam giác ECP (c.c.c) góc QCP=góc PCE (***$)
Từ (*****!) có góc QCD= góc BCE mà QCD+QCB=90* nên QCB+BCE=90* hay góc QCE=90*
Cho cạnh hình vuông ABCD có độ dài là 1 cm. Trên các cạnh AB, AD lấy các điểm P, Q sao cho chu vi hình tam giác APQ = 2 cm.
Chứng minh rằng: góc PCQ = 45 độ.
Hạ CH vuông góc PQ. Vẽ hình vuông BCEF. Trên BF lấy M sao cho PM = PQ (1)
Ta có : AP + PQ + QA = 2 = AP + PM + MF => MF = QA
=> BM = 1 - MF = 1 - QA = QD
=> tg vuông BCM = tg vuông DCQ ( vì BC = DC = 1; BM = QD) => CM = CQ (2)
Từ (1) và (2) => tg CPM = tg CPQ ( vì có CP chung; PM = PQ; CM = CQ) => ^CPH = ^CPB => tg vuông CPH = tg vuông CPB => ^PCH = ^PCB (3) và CH = CB = 1; PH = PB => QH = BM ( vì PQ = PM) => tg vuông CQH = tg vuông BMC = tg vuông DCQ => ^DCQ = ^HCQ (4)
Từ (3) và (4) => ^PCQ = ^PCH + ^HCQ = ^PCB + ^DCQ = 90o - ^PCQ => 2^PCQ = 90o => ^PCQ = 45 do
nho cho minh 1 tick nha
Hạ CH vuông góc PQ. Vẽ hình vuông BCEF. Trên BF lấy M sao cho PM = PQ (1)
Ta có : AP + PQ + QA = 2 = AP + PM + MF => MF = QA
=> BM = 1 - MF = 1 - QA = QD
=> tg vuông BCM = tg vuông DCQ ( vì BC = DC = 1; BM = QD) => CM = CQ (2)
Từ (1) và (2) => tg CPM = tg CPQ ( vì có CP chung; PM = PQ; CM = CQ) => ^CPH = ^CPB => tg vuông CPH = tg vuông CPB => ^PCH = ^PCB (3) và CH = CB = 1; PH = PB => QH = BM ( vì PQ = PM) => tg vuông CQH = tg vuông BMC = tg vuông DCQ => ^DCQ = ^HCQ (4)
Từ (3) và (4) => ^PCQ = ^PCH + ^HCQ = ^PCB + ^DCQ = 90o - ^PCQ => 2^PCQ = 90o => ^PCQ = 45o
Hạ CH vuông góc PQ. Vẽ hình vuông BCEF. Trên BF lấy M sao cho PM = PQ (1)
Ta có : AP + PQ + QA = 2 = AP + PM + MF => MF = QA
=> BM = 1 - MF = 1 - QA = QD
=> tg vuông BCM = tg vuông DCQ ( vì BC = DC = 1; BM = QD) => CM = CQ (2)
Từ (1) và (2) => tg CPM = tg CPQ ( vì có CP chung; PM = PQ; CM = CQ) => ^CPH = ^CPB => tg vuông CPH = tg vuông CPB => ^PCH = ^PCB (3) và CH = CB = 1; PH = PB => QH = BM ( vì PQ = PM) => tg vuông CQH = tg vuông BMC = tg vuông DCQ => ^DCQ = ^HCQ (4)
Từ (3) và (4) => ^PCQ = ^PCH + ^HCQ = ^PCB + ^DCQ = 90o - ^PCQ => 2^PCQ = 90o => ^PCQ = 45 °
cho hình chữ nhật ABCD (AB>BC) lấy điểm E trên cạnh AD, lấy F,K trên cạnh CD sao cho DF=CK ,(F nằm giữa D và K ) vẽ đường thẳng vuông góc với EK tại K cắt BC tại M .CM góc EFM=90 độ
1,Cho hinh thoi ABCD có chu vi 16cm. Đường chéo AC= 4cm. Tính độ dài đường chéo BD
2,Cho hình vuông ABCD. Trên cạnh AD lấy điểm F, trên cạnh AC lấy điểm E sao cho AF=DE. Cm AE=BF và AE vuông góc BF
Cho hình vuông ABCD. Trên cạnh AD lấy điểm F, trên cạnh CD lấy điểm E sao cho AF=DE
a, Cm ΔABF=ΔADE
b, Cm góc FAE+ góc AFB = 90o
c, Cm AE⊥BF
a: Xét ΔABF vuông tại A và ΔDAE vuông tại D có
AB=DA
AF=DE
=>ΔABF=ΔDAE
b: ΔABF=ΔDAE
=>góc ABF=góc DAE
=>góc FAE+góc AFB=90 độ
c; Gọi giao của AE và FB là O
góc FAE+góc AFB=90 độ
=>góc OAF+góc OFA=90 độ
=>AE vuông góc BF tại O
Cho hình vuông ABCD cạnh bằng a. Trên AB lấy E, AD lấy F sao cho AE+AF+EF=2a. Vẽ CH\(⊥\)EF. CMR:
a.H thuộc 1 đường tròn cố định.
b. Xác định E,F sao cho S AEF nhỏ nhất, lớn nhất.
Cho hình vuông ABCD cạnh có độ dài bằng a. Trên cạnh AD lấy điểm M và cạnh CD lấy điểm N sao cho góc MBN = 45°. Gọi E và F lần lượt là giao điểm của BM, BN với AC. a/ Chứng minh: Tứ giác BENC nội tiếp, từ đó suy ra NE vuông góc với BM b/ Gọi I là giao điểm của NE và MF. Chứng minh: BI vuông góc với MN. c/ Tìm vị trí của M và N để diện tích tam giác MDN lớn nhất. Tính diện tích lớn nhất đó theo a.
a.
DO ABCD là hình vuông \(\Rightarrow\widehat{ACD}=45^0\)
\(\Rightarrow\widehat{ACD}=\widehat{EBN}\)
Mà \(\widehat{ACD}\) và \(\widehat{EBN}\) cùng chắn EN
\(\Rightarrow\) Tứ giác BENC nội tiếp
\(\Rightarrow\widehat{BEN}+\widehat{BCN}=180^0\)
\(\Rightarrow\widehat{BEN}=180^0-\widehat{BCN}=180^0-90^0=90^0\)
\(\Rightarrow NE\perp BM\) tại E
b.
Tương tự ta có tứ giác ABFM nội tiếp (\(\widehat{MAF}=\widehat{MBF}=45^0\) cùng chắn MF)
\(\Rightarrow\widehat{BFM}+\widehat{BAM}=180^0\)
\(\Rightarrow\widehat{BFM}=90^0\Rightarrow MF\perp BN\)
\(\Rightarrow I\) là trực tâm của tam giác BMN
\(\Rightarrow BI\perp MN\)
c.
Gọi H là giao điểm BI và MN
Do E và F cùng nhìn MN dưới 1 góc vuông
\(\Rightarrow\) Tứ giác EFMN nội tiếp
\(\Rightarrow\widehat{EMN}+\widehat{EFN}=180^0\)
Mà \(\widehat{EFN}+\widehat{EFB}=180^0\)
\(\Rightarrow\widehat{EMN}=\widehat{EFB}\)
Lại có tứ giác ABFM nội tiếp (A và F cùng nhìn BM dưới 1 góc vuông)
\(\Rightarrow\widehat{EFB}=\widehat{AMB}\) (cùng chắn AB)
\(\Rightarrow\widehat{EMN}=\widehat{AMB}\)
\(\Rightarrow\Delta_VAMB=\Delta_VHMB\left(ch-gn\right)\)
\(\Rightarrow AM=HM\)
Đồng thời suy ra \(AB=BH\Rightarrow BH=BC\) (do AB=BC)
Theo Pitago: \(\left\{{}\begin{matrix}HN=\sqrt{BN^2-BH^2}\\CN=\sqrt{BN^2-BC^2}\end{matrix}\right.\) \(\Rightarrow CN=HN\)
\(\Rightarrow AM+CN=MH+NH=MN\)
\(\Rightarrow MD+DN+MN=MD+DN+AM+CN=AD+CD=2a\)
Pitago: \(MN^2=DM^2+DN^2\ge\dfrac{1}{2}\left(DM+DN\right)^2\Rightarrow MN\ge\dfrac{\sqrt{2}}{2}\left(DM+DN\right)\)
\(\Rightarrow2a-\left(DM+DN\right)\ge\dfrac{\sqrt{2}}{2}\left(DM+DN\right)\)
\(\Rightarrow2a\ge\left(\dfrac{2+\sqrt{2}}{2}\right)\left(DM+DN\right)\ge\left(2+\sqrt{2}\right).\sqrt{DM.DN}\)
\(\Rightarrow DM.DN\le\left(6-4\sqrt{2}\right)a^2\)
\(\Rightarrow S_{MDN}=\dfrac{1}{2}DM.DN\le\left(3-2\sqrt{2}\right)a^2\)
Dấu "=" xảy ra khi \(DM=DN=\left(\sqrt{6}-\sqrt{2}\right)a\)