Tính giá trị của biểu thức \(B=\frac{a+1}{\sqrt{a^4+a+1}-a^2}\)
trong đó a là nghiệm dương của phương trình \(4x^2+\sqrt{2}x-\sqrt{2}=0\)
Cho a là 1 nghiệm dương của phương trình \(4x^2+\sqrt{2}x-\sqrt{2}=0\) Tính giá trị biểu thức \(A=\frac{a+1}{\sqrt{a^4+a+1-a^2}}\)
Tính giá trị của \(B=\frac{a+1}{\sqrt{a^4+a+1}-a^2}\). Tronh đó a là nghiệm của phương trình \(4x^2+2\sqrt{x}-\sqrt{2}=0\)
Cho a là nghiệm dương của phương trình P= \(\frac{a+1}{\sqrt{a^4+a+1}-a^2}\) .Trong đó a là nghiệm dương của phương trình \(4x^2+\sqrt{2}x-\sqrt{2}=0\)
Gọi a là nghiệm dương của phương trình: \(\sqrt{2}x^2+x-1=0\) . Không giải phương trình, hãy tính giá trị biểu thức: \(C=\dfrac{2a-3}{\sqrt{2\left(2a^4-2a+3\right)}+2a^2}\)
a là nghiệm nên \(\sqrt{2}a^2+a-1=0\Rightarrow\sqrt{2}a^2=1-a\)
\(\Rightarrow2a^4=\left(1-a\right)^2=a^2-2a+1\)
\(\Rightarrow2a^4-2a+3=a^2-4a+4=\left(a-2\right)^2\)
Mặt khác \(1-a=\sqrt{2}a^2>0\Rightarrow a< 1\)
\(\Rightarrow\sqrt{2\left(2a^4-2a+3\right)}+2a^2=\sqrt{2\left(a-2\right)^2}+2a^2=\sqrt{2}\left(2-a\right)+2a^2\)
\(=\sqrt{2}\left(\sqrt{2}a^2-a+2\right)=\sqrt{2}\left(1-a-a+2\right)=\sqrt{2}\left(3-2a\right)\)
\(\Rightarrow C=\dfrac{2a-3}{\sqrt{2}\left(3-2a\right)}=-\dfrac{\sqrt{2}}{2}\)
Gọi a là nghiệm dương của phương trình : \(\sqrt{2}x^2+x-1=0\). Không giải phương trình, hãy tính giá trị của biểu thức :
\(C=\frac{2a-3}{\sqrt{2\left(2a^4-2a+3\right)}+2a^2}\)
ta có :
\(\sqrt{2}a^2+a-1=0\Leftrightarrow\sqrt{2}a^2=1-a\) nên ta có \(a\le1\)
\(\Rightarrow2a^4=a^2-2a+1\)Vậy \(C=\frac{2a-3}{\sqrt{2\left(a^2-4a+4\right)}+2a^2}=\frac{2a-3}{2a^2+\sqrt{2}\left(2-a\right)}=\frac{2a-3}{\sqrt{2}\left(\sqrt{2}a^2-a+2\right)}\)
\(=\frac{2a-3}{\sqrt{2}\left(1-a-a+2\right)}=\frac{2a-3}{\sqrt{2}\left(3-2a\right)}=-\frac{1}{\sqrt{2}}\)
Cho a là nghiệm dương của phương trình
\(4x^2+x\sqrt{2}-\sqrt{2}=0\). Tính:
\(\frac{a+1}{\sqrt{a^4+a+1}-a^2}\)
Ta có:
\(4a^2+a\sqrt{2}-\sqrt{2}=0\)
\(\Leftrightarrow2\sqrt{2}a^2+a-1=0\)
\(\Leftrightarrow a+1=2-2\sqrt{2}a^2\) thế vô ta được
\(\frac{a+1}{\sqrt{a^4+a+1}-a^2}=\frac{2-2\sqrt{2}a^2}{\sqrt{a^4+2-2\sqrt{2}a^2}-a^2}\)
\(=\frac{2-2\sqrt{2}a^2}{\sqrt{\left(\sqrt{2}-a^2\right)^2}-a^2}=\frac{\sqrt{2}\left(\sqrt{2}-2a^2\right)}{\sqrt{2}-2a^2}=\sqrt{2}\)
Bài 4: a. Cho phương trình: x ^ 2 - 9x + 16 = 0 có hai nghiệm dương phân biệt X_{1} X_{2} . Không giải phương trình, hãy tính giá trị của biểu thức T = (x_{1} * sqrt(x_{2}) + x_{2} * sqrt(x_{1}))/(x_{1} ^ 2 + x_{2} ^ 2)
\(T=\dfrac{\left(x1\cdot\sqrt{x_2}+x_2\cdot\sqrt{x_1}\right)}{x1^2+x_2^2}\)
\(=\dfrac{\sqrt{x_1\cdot x_2}\left(\sqrt{x_1}+\sqrt{x_2}\right)}{\left(x_1+x_2\right)^2-2x_1x_2}\)
\(=\dfrac{4\cdot\sqrt{x_1+x_2+2\sqrt{x_1x_2}}}{9^2-2\cdot16}=\dfrac{4\cdot\sqrt{9+2\cdot4}}{81-32}\)
\(=\dfrac{4\sqrt{17}}{49}\)
cho a là nghiệm dương của phương trình: \(4x^2+x-\frac{1}{\sqrt{2}}=0\)
Tính Q=\(\frac{x\sqrt{2}+1}{\sqrt{4x^4+x\sqrt{2}+1}-2x^2}\)
Cho biểu thức \(M=\left(\frac{x-\sqrt{x}+2}{x-1}-\frac{1}{\sqrt{x}-1}\right).\frac{x+2\sqrt{x}+1}{2x-2\sqrt{x}}\) với x>0, x khác 1
a) Rút gọn M
b) Tính giá trị của a để phương trình M= a có nghiệm
\(M=\left(\frac{x-\sqrt{x}+2}{x-1}-\frac{1}{\sqrt{x}-1}\right)\cdot\frac{x+2\sqrt{x}+1}{2x-2\sqrt{x}}\)
\(=\frac{\left(x-\sqrt{x}+2\right)-\sqrt{x}-1}{x-1}\cdot\frac{\left(\sqrt{x}+1\right)^2}{2\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\frac{x-2\sqrt{x}+1}{x-1}\cdot\frac{\sqrt{x}+1}{2\sqrt{x}}\)
\(=\frac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)}{2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}-1}{2\sqrt{x}}\)
b) PT có nghiệm <=> x>0
<=>\(\sqrt{x}>0\)
<=> \(\sqrt{x}-1>-1\)
<=> x>-1
Yessssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss