Cho tam giác ABCD có góc A = góc B và AD = BC. Chứng minh rằng tứ giác ABCD là hình thang cân.
Cho tứ giác ABCD có góc A= góc B, AD=BC. Chứng minh tứ giác ABCD là hình thang cân
Xét ΔADB và ΔBCA có
AD=BC
\(\widehat{DAB}=\widehat{CBA}\)
AB chung
Do đó: ΔADB=ΔBCA
Suy ra: DB=CA
Xét ΔACD và ΔBDC có
AC=BD
DC chung
AD=BC
Do đó: ΔACD=ΔBDC
Suy ra: \(\widehat{ADC}=\widehat{BCD}\)
Xét tứ giác ABCD có
\(\widehat{DAB}+\widehat{ABC}+\widehat{ADC}+\widehat{BCD}=360^0\)
\(\Leftrightarrow2\cdot\left(\widehat{DAB}+\widehat{ADC}\right)=360^0\)
\(\Leftrightarrow\widehat{DAB}+\widehat{ADC}=180^0\)
mà hai góc này là hai góc ở vị trí trong cùng phía
nên AB//CD
Xét tứ giác ABCD có AB//CD
nên ABCD là hình thang
mà AC=BD
nên ABCD là hình thang cân
Bài 1:
cho tam giác ABC cân tại A các đường cao BE vàCF chứng minh rằng tứ giác BFEC là hình thang cân ?
Bài 2 :
Chứng minh rằng : tứ giác ABCD có góc D = góc C và AD = BC thì tứ giác đí là hònh thang cân ?
bài 1 mk đã giải cho bạn kiên trần cách giải bài đó cũng như bài này nên bạn xem chỗ bạn kiên trần nhé!
bài 2 theo mk là làm như thế này !
à mà bạn tự vẽ hình nhé!!!
Trong tứ giác ABCD , từ đỉnh A kẻ AH \(\perp\)DC , từ đỉnh B kẻ BG \(\perp\)DC.
Xét \(\Delta\)vuông ADH và \(\Delta\) vuông BCG có:
AD = BC ( đề cho)
góc D = góc C ( đề cho )
=> \(\Delta\)vuông ADH = \(\Delta\)vuông BCG ( cạnh huyền - góc nhọn )
=> AH = BG
mặt khác AH // BG ( cùng \(\perp\) BC )
=> Tứ giác ABGH là hình bình hành
=> AB // HG hay AB // DC
Tứ giác ABCD có góc D = góc C và AB // DC
=> ABCD là hình thang cân ( đpcm)
Bài 3.Cho hình thang ABCD (AB // CD) có AD = CD và AC vuông góc BC. Từ C kẻ đường thẳng song song với AD và cắt AB tại E. a) Chứng minh tứ giác AECD là hình thoi. b) Chứng minh tứ giác BEDC là hình bình hành. c) Chứng minh tam giác CEB cân. d) Giả sử tam giác CEB đều. Chứng minh tứ giác ABCD là hình thang cân
1. Cho hình thang ABCD(AB//CD). M là trung điểm của BC. Cho biết DM là tia phân giác của góc D. Chứng minh rằng tia AM là tia phân giác của góc A.
2.Tứ giác ABCD có AD=BC và AC=BD. Chứng minh rằng ABCD là hình thang cân.
Xét ▲ADC và ▲BCD có:
AD = BC ( gt )
AC = BD ( gt )
DC chung
=> ▲ADC = ▲BCD ( c.c.c )
=> góc D = góc C ( c.t.ứ )
cmtt ta đc góc A = Góc B
Mà Góc D + góc A + Góc C + Góc B=360o
=> 2GócA+2GócD=360o
-> gócA+gócD=180o ( 2 góc trong cùng phía )=>AB//DC -> ABCD là hình thang
Vì góc D = góc C (cmt) nên ABCD là hình thang cân
Cho tứ giác ABCD \(AB=BC=AD\) , và\(\widehat{DAB}\) + \(\widehat{BCD}\) = \(^{^{ }180^o}\)
a) Chứng minh rằng DB là tia phân giác của góc \(\widehat{ADC}\) ?
b) Chứng minh rằng tứ giác ABCD là hình thang cân ?
a. Ta có: AD = AB
=> \(\Delta ABD\) là tam giác cân
=> Góc ADB = góc ABD (1)
Mà góc ABD = góc BDC (so le trong) (2)
Từ (1) và (2), suy ra:
BD là tia phân giác của góc ADC
b. Nối AC
Xét 2 tam giác ABC và ABD có:
AD = BC (gt)
AB chung
=> \(\Delta ABD\sim\Delta ABC\) (1)
Ta có: AD = AB = BC (2)
Từ (1) và (2), suy ra: \(\Delta ABD=\Delta ABC\)
=> Góc A = góc B
Ta có: AB//CD
=> Góc D + góc A = 90o (2 góc trong cùng phía)
Mà góc A = góc B
=> Góc C = góc D
=> ABCD là hình thang cân
Nhưng bậy giờ bn chỉ cần chứng minh đó là hình thang là đc
Tứ giác ABCD có AB = BC = AD , góc A = 110 , góc B = 70 . Chứng minh rằng :
a) DB là tia phân giác góc B
b) Tứ giác ABCD là hình thang cân
Kẻ .BN vuông AD, BM vuông CD
Xét tam giác vuông BNA và BMD có
+ AB = BC
+ BNA = 180* - BAD = 70* nên BAN = BCD = 70*
=> tam giác BMD= tam giác BND(cạnh huyền - góc nhọn)
Suy ra : BN = BM => BD là phân giác góc D (đpcm)
b/
Nối B vs D, do AB = AD nên tam giác ABD cân tại A khi đó ADB = (180*-110*) :2 = 35*
=>ADC = 70*
Do ADC + BAD = 180* => AB song song CD
VÀ BCD = ADC =70*
=> tứ giác ABCD là htc (đpcm)
Kẻ .BN vuông AD, BM vuông CD
Xét tam giác vuông BNA và BMD có
+ AB = BC
+ BNA = 180* - BAD = 70* nên BAN = BCD = 70*
=> tam giác BMD= tam giác BND(cạnh huyền - góc nhọn)
Suy ra : BN = BM => BD là phân giác góc D (đpcm)
b/
Nối B vs D, do AB = AD nên tam giác ABD cân tại A khi đó ADB = (180*-110*) :2 = 35*
=>ADC = 70*
Do ADC + BAD = 180* => AB song song CD
VÀ BCD = ADC =70*
=> tứ giác ABCD là htc (đpcm)
a﴿ Kẻ BN vuông AD, BM vuông CD
Xét tam giác vuông BNA và BMD có
: AB = BC ; góc BNA = 180 độ
‐ góc BAD = 70 độ
nên góc BAN = góc BCD = 70 độ
=> tam giác BMD = tam giác BND ﴾cạnh huyền ‐ góc nhọn﴿
=> BN = BM => BD là phân giác góc D
b﴿ Nối B vs D, do AB = AD nên tam giác ABD cân tại A
khi đó góc ADB = ﴾180 ‐110) :2= 35 độ
=> góc ADC = 70 Do góc ADC + góc BAD = 180 => AB // CD
Và góc BCD = góc ADC = 70 độ
=> ABCD là hình thang cân
Tứ giác ABCD có AB = BC = AD , góc A = 110 , góc B = 70 . Chứng minh rằng :
a) DB là tia phân giác góc B
b) Tứ giác ABCD là hình thang cân
nam cao copy tại https://vn.answers.yahoo.com/question/index?qid=20120905071415AAmqNM6
a, Kẻ .BN vuông AD, BM vuông CD
Xét tam giác vuông BNA và BMD có
+ AB = BC
+ BNA = 180* - BAD = 70* nên BAN = BCD = 70*
=> tam giác BMD= tam giác BND(cạnh huyền - góc nhọn)
Suy ra : BN = BM => BD là phân giác góc D (đpcm)
b/
Nối B vs D, do AB = AD nên tam giác ABD cân tại A khi đó ADB = (180*-110*) :2 = 35*
=>ADC = 70*
Do ADC + BAD = 180* => AB song song CD
VÀ BCD = ADC =70*
=> tứ giác ABCD là htc (đpcm)
tứ giác ABCD có góc A + góc C = 180 độ
nên tứ giác ABCD nội tiếp đường tròn
nên góc ADB = ACB ( 2 góc cùng chắn cung AB)
Mà góc ACB = BAC ( tam giác ABC cân tại B do AB = BC )
và góc BAC = BDC ( cùng chắn cung BC)
==>> góc ADB = BDC (1)
nên DB là tia phân giác của góc D
Ta có góc ADB = ABD ( tam giác ADB cân tại A do AD = AB ) (2)
Từ (1), (2) ta suy ra góc ABD = BDC
mà 2 góc này ở vị trí so le trong so với 2 đoạn AB và CD
do đó AB // CD
==> ABCD là hình thang
mà AD = BC nên ABCD là hình thang cân
cho tứ giác ABCD có: góc A = 110 độ, góc B = 70 độ. AB=BC=AD. chứng minh tứ giác ABCD là hình thang cân???
Kẻ .BN vuông AD, BM vuông CD
Xét tam giác vuông BNA và BMD có
+ AB = BC
+ BNA = 1800 - BAD = 700 nên BAN = BCD = 700
=> tam giác BMD= tam giác BND(cạnh huyền - góc nhọn)
Suy ra : BN = BM => BD là phân giác góc D
Nối B vs D, do AB = AD nên tam giác ABD cân tại A khi đó ADB = (1800 - 1100) :2 = 350
=>ADC = 700
Do ADC + BAD = 1800 => AB song song CD
VÀ BCD = ADC =700
=> tứ giác ABCD là hình thang cân (đpcm)
chúc bạn học giỏi!! ^^
ok mk nhé!! 3564774734563476576855957234234342342323435345345456465465475676578658563463434
Bài 1 : Cho hình thang cân ABCD (AD // BC) có góc A = 60 độ , AD = 4 cm và BC = 2 cm. Qua B kẻ đường thẳng song song với CD cắt AD ở E.
1) Tính ED.
2) Chứng minh tam giác ABE đều.
3) Kẻ BH vuông góc với AD ở H. Tính AH.
Bài 2 : Cho tam giác ABC cân tại A có các đường phân giác BE và CF. Chứng minh :
1) Tam giác AEF cân tại A
2) Tứ giác BCEF là hình thang cân
3) CE=EF=FB
Bài 3 : Tứ giac ABCD có góc A=góc B, BC=CD và DB là tia phân giác của góc D. Chứng minh:
1) Tứ giác ABCD là hình thang vuông
2) AC^2 + AD^2 = BC^2 + BD^2
Bài 4 :Cho hình tang cân ABCD (AB song song CD,AB<CD) có AH,BK là các đường cao. Chứng minh :
1) Tam giác AHD=Tam giác BKC
2) DH = (CD-AB)/2
GIÚP TUI VS!!!! CÂN GẤP Ạ
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC