Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cube Nguyễn
Xem chi tiết
Lấp La Lấp Lánh
12 tháng 9 2021 lúc 12:18

Đề là gì bạn nhỉ?

Nguyễn Lê Phước Thịnh
12 tháng 9 2021 lúc 12:38

Đề bài yêu cầu gì?

Ừ Anh Sai
Xem chi tiết
Cá Chép Nhỏ
21 tháng 7 2019 lúc 20:06

1, Thấy : \(\frac{1}{5}< \frac{2}{2.4}\)

                \(\frac{1}{13}< \frac{2}{4.6}\)

                  .....

                  \(\frac{1}{n^2+\left(n+1\right)^2}< \frac{2}{2n\left(2n+1\right)}\)

Cộng từng vế có :

 \(\frac{1}{5}+\frac{1}{13}+...+\frac{1}{n^2+\left(n+1\right)^2}< \frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{2n\left(2n+2\right)}\)

\(\frac{1}{5}+\frac{1}{13}+...+\frac{1}{n^2+\left(n+1\right)^2}< \frac{1}{2}-\frac{1}{4}+....+\frac{1}{2n}-\frac{1}{2n+2}\)

 \(\frac{1}{5}+\frac{1}{13}+..+\frac{1}{n^2+\left(n+1\right)^2}< \frac{1}{2}-\frac{1}{2n+2}\)

Mà \(\frac{1}{2}-\frac{1}{2n+2}< \frac{1}{2}\)=> Tổng trên < 1/2

Cá Chép Nhỏ
21 tháng 7 2019 lúc 20:17

2,M = \(\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+...+\frac{2n+1}{\left[n\left(n+1\right)\right]^2}\)

=> M \(=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+...+\frac{1}{\left(n-1\right)^2}-\frac{1}{n^2}+\frac{1}{n^2}-\frac{1}{\left(n+1\right)^2}\)

    \(M=1-\frac{1}{\left(n+1\right)^2}=\frac{\left(n+1\right)^2-1}{\left(n+1\right)^2}=\frac{n^2+2n+1-1}{\left(n+1\right)^2}=\frac{n^2+2n}{\left(n+1\right)^2}\)

Đến đây tắc r tự nghĩ tiếp >:

Ừ Anh Sai
24 tháng 7 2019 lúc 14:47

tại xao 1/n^2+(n+1)^2 < 2n(2n+1)?

Trần Thị Thảo Vi
Xem chi tiết
Vũ Hải Anh
Xem chi tiết
Văn Tùng Trương (Mr Flas...
5 tháng 4 lúc 20:03

Ta có: S = \(\dfrac{1}{3}+\dfrac{3}{3.7}+\dfrac{5}{3.7.11}+...+\dfrac{2n+1}{3.7.11...\left(4n+3\right)}\)

⇒ 2S = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{10}{3.7.11}+...+\dfrac{4n+2}{3.7.11...\left(4n+3\right)}\)

⇒ 2S + \(\dfrac{1}{3.7.11...\left(4n+3\right)}\) = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{10}{3.7.11}+...+\dfrac{4n+3}{3.7.11...\left(4n+3\right)}\)

Đến đây nó sẽ rút gọn liên tục và sau nhiều lần rút gọn ta có:

2S + \(\dfrac{1}{3.7.11...\left(4n+3\right)}\) = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{10}{3.7.11}+\dfrac{1}{3.7.11}\) = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{11}{3.7.11}\) = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{1}{3.7}\) = \(\dfrac{2}{3}+\dfrac{7}{3.7}=\dfrac{2}{3}+\dfrac{1}{3}=1\)

Suy ra 2S < 1 ⇒ S < \(\dfrac{1}{2}\)(đpcm)

Hà Trí Kiên
Xem chi tiết
No name :)))
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 2 2021 lúc 10:12

a)

*\(1+2+3+...+\left(n-1\right)+n\)

Số số hạng là:

\(\left(n-1\right):1+1=n-1+1=n\)(số hạng)

Tổng của dãy số là: 

\(\left(n+1\right)\cdot\dfrac{n}{2}=\dfrac{n\left(n+1\right)}{2}\)

*\(1+3+5+...+\left(2n-1\right)\)

Số số hạng của dãy số là: 

\(\left(2n-1-1\right):2+1=\dfrac{\left(2n-2\right)}{2}+1=n-1+1=n\)(số hạng)

Tổng của dãy số là: 

\(\left(2n-1+1\right)\cdot\dfrac{n}{2}=\dfrac{2n^2}{2}=2n\)

Van Hoang
Xem chi tiết
Xyz OLM
17 tháng 1 2021 lúc 15:31

A = \(\left(1+\frac{1}{1.2}\right)+\left(1+\frac{1}{2.3}\right)+...+\left(1+\frac{1}{99.100}\right)\)(99 số hạng)

\(\left(1+1+....+1\right)+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)(99 số hạng 1)

\(99.1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(99+\left(1-\frac{1}{100}\right)=99+\frac{99}{100}=99,99\)

Khách vãng lai đã xóa
Nguyễn Hà Châu Anh
Xem chi tiết
Nguyễn Đắc Linh
6 tháng 2 2023 lúc 21:19

A=1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9

A=1/3-1/9

A=2/9

Nguyễn Đắc Linh
6 tháng 2 2023 lúc 21:20

các câu 2;3 còn lại giống câu 1 bạn nhé

bạn thay số vào rồi làm tương tự

Phạm Ngọc Linh
6 tháng 4 lúc 18:51

A=1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9

A=1/3-1/9

A=2/9.

le diep
Xem chi tiết
Phạm Tuấn Kiệt
1 tháng 8 2015 lúc 8:18

cách mình đúng;

3S = 1.2.3 + 2.3.3 + 3.4.3 + ... + n(n +1)3
= 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) + ...+ n(n + 1)((n + 2) - (n -1))
= 1.2.3 + 2.3.4 - 2.3 + 3.4.5 - 2.3.4 + ... + n(n + 1)(n + 2) - n(n + 1)(n - 1)
= n(n + 1)(n + 2)
=> S = n(n + 1)(n + 2)/3